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Expertise in any field is a combination of skill and enculturation. When entering

a field, novices gain expertise by developing skills, but more importantly, novices need to

become a part of the community.

Apprenticeships and mentorships are common methods for modeling learning expe-

riences that combine skill and culture to teach and enculturate novices. However, computer

science is a field that is growing so quickly that the apprentice/mentor models have been

stunted due to high student-teacher ratios. I hypothesize that we can scale the apprenticeship

of novices by integrating enculturation with skills learning.

In this dissertation I contribute the design, implementation and evaluation of two

xxi



www.manaraa.com

learning experiences that integrate skills and enculturation, thus scaling the teaching of

novices ranging from 9-years-old to Bachelor’s-level into computer science. The first

contribution is to a large, Bachelor’s-level, in-person course where I use Peer Instruction and

Exploratory Homeworks to enrich student learning. The second contribution is CodeSpells,

an immersive learning experience that enculturates and teaches children as young as 9 years

old.
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Chapter 1

Introduction

The importance of apprenticeship, the integration of culture and skill, in learning

has been demonstrated since the 400s B.C. when Socrates took on students such as Plato

and Xenophon, who not only studied under him, but experienced life with him. Evidence of

this is the written accounts of Socrates, which are primarily based on conversations rather

than a textbook of facts [162]. With the increased popularity of computer science for all

ages, this critical experience is getting harder to deliver.

1.1 Enculturating Novices is Integrated in Learning

In this dissertation, I present two interventions to novices computer science learning

environments that enculturate novices’ into the field. “Enculturation”, here, is defined as the

novices engagement with skills and knowledge through activities such as:

• apply them with discipline-specific authenticity,

• discuss them with other members of that discipline,

• explain them to non-members at a basic level, or

• apply them to new problems that they have never seen before.

Enculturating novices means helping them develop an understanding of the decisions and

reasonings for actions taken by members of the community for which the novice is studying

1
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to be a part. Furthermore, the novice would develop an identity within this community that

is recognized by other members of the community.

1.1.1 Enculturation is Traditionally Found in Apprenticeships

Apprenticeships have successfully enculturated novices for thousands of years [28].

They begin with a novice who studies under a master craftsman to understand the trade,

both skills and culture. Shortly after, she might “journey” and further develop. Finally, she

might become a master craftsman and take on apprentices of her own.

The journey of an apprentice typically begins with an anticipatory learning pe-

riod [99] where novices begin to enculturate themselves in the field. This learning period is

often filled with legitimate peripheral participation: performing useful tasks, but not taking

on projects that directly result in a product of the field. An example of this can be found

in Situated Learning [87], where Lave and Wenger describe the novice tailor that delivers

fabrics, a useful part of the community, but not directly creating the clothing.

Through apprenticeships, the novice gets closer to becoming a master craftsman.

For example, the tailor will begin by delivering fabrics, and in so doing observe the process

of making clothing. The novice is then given a small garment to make, such as a hat. In

making the hat, he begins to develop skills, and also has the opportunity to experience a

subset of the process of making a garment. Slowly, as the novice tailor gains expertise, he

will make larger and more complex garments until he becomes a master tailor himself. The

legitimate peripheral participation slowly becomes full legitimate peripheral participa-

tion; participants are always apprenticing, even experts consult with their peers to develop

new skills or expertise.

In computer science, an example might be that a novice constructs test cases for

a system, then she might write a small helper method for a larger program, which allows

her to develop programming skills while experience a subset of writing an entire program.

Like the tailor, she will continue to write more complex and larger programs until she, too,
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becomes a master in her craft.

Overtime, the apprentice engages in some form of legitimate participation. The set

of knowledge and practices that comprise expertise is defined by the existing community’s

values and through apprenticeships, novices become enculturated in those values as they

become more expert. Chapter 2 summarizes this theory with respect to my dissertation.

1.2 Leveraging Social and Visual Embodiments of Com-
puter Science Ideas in Curricula

In the last decade, computational thinking has become a basic literacy that all

students should have in the United States [42, 25, 31, 61], sparking new curricula, and

software that aim to provide effective computer science education to students of all ages.

A result of this shift is a focus on learning experiences for novices that provide concrete

examples to traditional computer science concepts. For example, the Media Computation

course [68] is a curricula that introduces computer science to a population of people that

might not otherwise be inclined to pursue it; digital artists. Furthermore, by concretely

representing computing concepts through pictures and audio, novices are better able to

understand the the effects of the code edits that they are making, reducing their cognitive

load and therefore yielding better learning outcomes [110, 149].

Software such as Scratch [101] provides an online community where students are

encouraged to share their projects with other members of the community. Once a project

has been shared, members are able to “remix” projects; use the projects as starter code to

build something new from. This sharing creates a society around programming in Scratch

that encourages members to engage with each other and become enculturated into the

community. Additionally, Scratch has a visual representation of code effects (similar to

Media Computation), but also offers a visual representation of the code. Representing code

in visual blocks, rather than text, makes the program more accessible to younger people,
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and focuses novices on the logic of computer science, rather than the syntax.

Scratch, and environments like it such as Alice, are open environments that allow

for creativity and self-direction. Scratch’s “primary goal is not to prepare people for careers

as professional programmers, but rather to nurture the development of a new generation

of creative, systematic thinkers who are comfortable using programming to express their

ideas” [121]. When paired with a well-designed curriculum and computer science teacher,

Scratch can enculturate and teach children who, after only a couple weeks, are able to build

large, complex games and simulations [92]. However, without the addition of a textbook or

guidance from an expert, novices are not often engaged in deliberate practice [53]. On the

other hand, online environments such as Codecademy are extremely guided, which can limit

novices’ skills in writing code without the help of a tutorial [23, 24].

Leveraging the social and visual embodiments of computer science through curricula

and software is being done in the examples provided above, however they require additional

support from instructors. This proves to be a problem when the learning experiences begin

to scale, as we will see in the next section.

1.3 The Computer Science Culture Crisis

Though the increase in popularity of computer science at all ages has had a very

positive impact on our society [38], it has also caused student-teacher ratios to skyrocket [30].

More students are eager to learn to program, requiring a more scalable learning experience.

Because apprenticeships by design are small groups that support highly interactive learning

experiences, it is difficult to mimic apprenticeship when the student-teacher ratio begins

to grow.The question this dissertation takes up is, How might we scale, but still keep the

benefits of apprenticeship?

Specifically, I am interested in two large groups of novice programmers: undergrad-

uates and children. Even by focusing on these two groups, there are a variety of places
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Table 1.1. Students learn in many types of settings: this dissertation explores the three
bolded ones.

Undergraduates Children

In-Person Classes Large University Class Class taught by Non-Computer
Science Teachers

Small University Class Class taught by Computer Sci-
ence Teachers

Online Classes MOOCs (Massively
Open Online Course)

cMOOCs (Community
and Connections)

Software Novice Programming
Environments

Novice Programming Environ-
ments

Tutorials Scaffolded Learning Software

and ways to learn computer science, and each one is being affected by the rapid growth.

Table 1.1 highlights some of this variety.

Each learning experience shown in Table 1.1 represents an entire research field. In

this dissertation I focus on the first row: undergraduate students in a large university class

and children in a class taught by non-computer science teachers using scaffolded learning

software, software that encourages novices to interactively engage in deliberate practice and

provides the support to continue learning [129, 1, 53].

1.3.1 Undergraduates in Large Classes are Missing Culture

Formal learning institutions demonstrate that they value enculturation through MFA

and Doctoral programs. In computer science, doctoral programs typically support legitimate

peripheral participation, apprenticeship for incoming students by engaging Master’s level

students in pieces of larger projects led by advisors or senior students [156]. The journey is

full of situations where they learn how to conduct research; developing a thesis, forming a

supportive argument, and testing the thesis. This period also typically involves communicat-
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ing this work to the research community, learning the language and discourse of the field. A

doctoral program ranges from 4-6 years, and in that time students increase their role within

the community, until they can demonstrate a contribution worthwhile to that community;

written and presented in a dissertation. However, doctoral programs typically have a low

student-teacher ratio, making this model possible.

On the other hand, undergraduate computer science enrollments have been increas-

ing [163] and computer science is becoming a general education requirement for some

schools and majors [29]. This is causing introductory computer science (CS0 and CS1)

enrollments to drastically increase and results in the design of undergraduate education in

computer science to lose the “apprentice-like” experience. At large institutions, Bachelor’s

students have limited interaction with the “master craftsman”, or professor. Wenger claims

that this is because those who designed the learning experience act on the belief that “learn-

ing is an individual process, that it has a beginning and an end, that it is separated from the

rest of our activities, and that it is the result of teaching” [158].

Due to the large student-teacher ratio, graduate and undergraduate teaching assistants

are widely used to lower the ratio. However, there is not enough support to transform 500-

student classes into small apprenticeship-sized groups, which makes experiences outside of

the classroom even more critical to the education of undergraduate students. Mentorship

programs and industry internships are widely used as apprenticeship opportunities for

students. Companies such as Microsoft and Google even provide internships for first

and second year undergraduates [108, 66], because they recognize the need to enculturate

throughout the learning experience.

Though external resources are available, and popular, universities still offer courses

as a primary teaching agent. As a result, transformations to curricula for introductory

programming courses have been developed by many computer science education researchers

such as Garcia et al. at UC Berkeley [65], Guzdial et al. at Georgia Tech [68], and Simon et
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al. at UC San Diego [139]. Chapter 2 dives deeper into one lecture intervention developed

at UC Berkeley by Clancy et al. that enculturates undergraduates, but is not easily scalable.

1.3.2 Children Entering Computer Science Don’t Have Access to
Computer Science Teachers

Multi-subject teachers are not typically trained in computer science, and even single-

subject teachers are rarely trained in computer science; in part because it is not a core

subject and has the possibility of being cut in a fiscal crisis [160]. With the lack of trained

computer science teachers, software itself needs to deliver the expertise of programming

skills while also facilitating enculturation since the teacher does not necessarily have the

domain knowledge. One goal of this work is to empower K-12 teachers to effectively

teach computer science, without extensive training, by providing a well-designed learning

environment for students.

1.4 An Approach: Integrating Enculturation into Skills
Learning

In this dissertation I contribute improvements to computer science education for

undergraduates and children. I have based my research on the theoretical framing of

apprenticeship, which I introduced in Section 1.1 and more deeply explore in Chapter 2.

Scaling apprenticeships is not straightforward; to explore scaling strategies I created a

course where undergraduate students in large, university classrooms can effectively engage

in computational thinking and authentic practices both in lecture and at home on their

own. I also designed and evaluated an educational software program for children to learn

programming and learn to think like a computer scientist. Based on my contributions and the

theories behind them, I develop an initial framework for teaching novice computer scientists

at various ages and with various programming languages. The contributions I make can be

applied to new scaling attempts in the future (see Section 11).
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The contribution of this thesis is two-fold: an approach for integrating enculturation

into skills learning for undergraduates in a large university classroom and for children who

do not have access to a computer-science teacher. My hypothesis is:

Advances in our understanding of learning, the subject of computer
science itself, and computing automation can integrate enculturation
into novice learning experiences and scale it to match large student-
teacher ratios.

I tested this hypothesis in two different settings:

Undergraduates. I transformed a large undergraduate lecture by integrating and

designing a Peer Instruction pedagogy and I transformed the time spent outside of lecture

through the design and implementation of Exploratory Homeworks, which enculturate

students without an expert (See Section 1.5).

Children. I designed and built a serious game, CodeSpells, that enculturates and

engages children in developing programming skills, particularly in the absence of a computer

science teacher (See Section 1.6).

1.5 Improving Undergraduate Novice Experiences: Re-
designing a CS0-Level Course to Include Encultura-
tion

In 2010, UC San Diego sought to re-design the CS0-level computer science course.

The course entitled CSE 3: Fluency in Information Technology was one of the first pilots

courses under the CE21 NSF Grant for the Advanced Placement Computer Science Prin-

ciples course [61, 155]. The AP CS Principles courses “seek to broaden participation in

computing and computer science” [41]. Along with Dr. Beth Simon and Dr. Quintin Cutts,

I redesigned CSE 3 to meet the goals set out by the College Board and NSF.

As described above, it is critical for novices to have legitimate peripheral par-

ticipation when entering a field. We therefore created a course that aimed to enculturate
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approximately 500 students at once by implementing a technique called Peer Instruction [39].

In a Peer Instruction course, students must complete pre-class reading. Though pre-class

reading is common, PI tests the students completion of the reading at the beginning of class

time with a short quiz. Following the quiz, class time is a series of multiple-choice questions

interspersed with mini-lectures. For each multiple-choice question, students are required

to vote individually, then discuss and vote as a group of 2-3. A class-wide discussion and

mini-lecture then follows each question.

The first setting where I test my hypothesis is by transforming a large univer-

sity classroom (CSE 3) to include enculturation.

To understand how the design of CSE 3 affects novice students in CSE 3, we first

conducted a pilot course where we observed student behavior and experience. Chapter 3

reports on the initial development and deployment of this pilot course. The course is designed

to introduce core computational concepts and instill computational thinking practices. We

report on the initial offering with 571 university students, mostly non-CS majors taking the

course as a general education requirement. We discuss the instructional design supporting

the course; describe how the various components were implemented, and review student

work and valuation of the course. Though the course appears to “teach programming” in

Alice, students reported gaining significant analysis and communication skills they could

use in their daily lives. We reflect on how instructional design decisions are likely to

have supported this experience and consider the implications for other K-12 computing/IT

education efforts as well as for regular CS1 courses.

The Peer Instruction questions and pedagogy that we implemented in CSE 3 were

preliminarily validated in our pilot study and in Chapter 3 show that students who take

this course experience a change in confidence, appreciation, problem solving, transfer and

communication in computer science. To further test the effectiveness of this intervention

and re-design, I then evaluated it from the students and course design point of view.
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1.5.1 Evaluating the Peer Instruction Intervention from the Students’
Perspective

In Chapter 4 we begin to understand how Peer Instruction enculturates students in a

large lecture environment in computer science. Studies have shown Peer Instruction (PI) in

computing courses to be beneficial for learning and retention, however study of the student

experience has been limited to attitudinal survey results [115, 137]. We report on a study that

provides a preliminary evaluation of student experiences in a PI course. We asked students to

reflect on their role as a student in a PI lecture compared to a standard university lecture, then

analyzed their written responded using Chi’s Interactive-Constructive-Active-Passive (ICAP)

framework which categorizes student activities by their value in a constructivist learning

framework. We found that the majority of students reported activity in a PI lecture as

“interactive” in contrast with “active” (e.g. taking notes) in a standard lecture. Additionally,

a grounded theory open-coding analysis found that while students positively value learning-

related aspects (feedback and increased understanding), a surprising breadth of value was

noted around issues of affect and increased sense of community.

1.5.2 Evaluating the Peer Instruction Intervention from the Course
Design Perspective

Chapter 5 describes a post-hoc analysis of our CSE 3 lecture materials. The purpose

of this analysis is to identify what knowledge and skills we are asking students to acquire, as

situated in the activity, tools, and culture of what programmers do and how they think. The

specific materials analyzed are the 133 Peer Instruction questions used in class. This open

coding yielded an Abstraction Transition Taxonomy for classifying the kinds of knowing

and practices we engage students in as we seek to apprentice them into the programming

world. Throughout the course, students engaged in three levels of abstraction: English,

CS Speak, and Code. Moreover, many questions ask students to transition between levels

of abstraction within the context of a computational problem. For example, Figure 1.1
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Figure 1.1. Example MCQ: Transition from CS Speak to Code.

demonstrates a formative PI question that asks the students to transition from CS Speak

to Code. Interestingly, applying our taxonomy in classifying our final exam demonstrated

that we tend to emphasize a small range of the skills fostered in students during the forma-

tive/apprenticeship phase. This disconnect is troubling for both fairness and learning, in that

we are not testing what we teach or what we would like to measure.

1.5.3 The Design, Implementation and Evaluation of Exploratory
Homeworks: An Out-of-Lecture Intervention

The classroom lecture is only one of the resources students commonly have for

learning in higher education. In particular, PI tests students understanding of pre-cass reading

at the beginning of each class and professors assume students have completed the reading,

and therefore do not re-teach it. In Chapter 6, we introduce exploratory homeworks – a

framework to support active learning for teaching programming languages. By interactively

exploring the language concepts that they are reading about, misunderstandings can be

immediately identified and corrected, in contrast to waiting until the next programming

assignment or lab session days later. By leveraging the ability for the student to interact
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with the computer/compiler, we provide a culturally authentic model for students of how to

explore and understand programming language constructs and concepts introduced in the

reading.

We report on the use of 15 exploratory homework assignments used in CSE 3 with

440 students. We provide a model and advice for others wishing to develop exploratory

homeworks for their programming courses and present quantitative and qualitative evidence

regarding students’ positive valuation of the homeworks.

1.6 Integrating Enculturation into Learning Environ-
ments for Children

In 2011, Stephen Foster and I sought to engage children in learning to program

through an immersive learning environment. Our goal was an environment that did not re-

quire an expert computer scientist to motivate, teach, enculturate, or guide the child. Though

this goal is difficult to achieve, I present the first iterations of the design, implementation

and evaluation of our environment and show that children can become enculturated while

learning Java through our environment.

Our environment is a 3D immersive video game called CodeSpells. In this game,

players take on the role of an apprentice wizard, they engage in quests put forth by the

gnomes of the land they have come to save. To solve the quests, the players must write

programs that interact with the world around them. We chose to use a video game so that

we could build on the intrinsic motivators that games provide [60], we chose to use the

metaphor of magic and wizardry to build on the popularized view that programming is

magic [18], but magic is also learnable [125].

In the beginning we designed a basic sandbox game where players could walk around,

interact with three gnomes, and write and cast three spells. To evaluate enculturation

within the game, we categorized expert programmers’ experiences when they were
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Table 1.2. Theoretical Framework used to examine novice programming environments.

Category Ways of Describing

Learner-Structured
Activities

Self-driven, Access to immediate feedback, Access to
support

Exploration/Creativity
/Play

Creation of “meaningful” artifacts, Investment in the
results of the code

Programming as Em-
powerment

Enjoyable/emotional connection, confidence/belief
that you can succeed, wrongness is on a spectrum;
not binary

Difficulty Stopping “Flow-state” while programming, Feeling addicted

“Countless” Hours Lots of hours/re-visitation, Losing track of time

novices (see Table 1.2) and applied that categorization to the sandbox version, as well

as the designs for future iterations for CodeSpells. In Chapter 7 we take a step toward

illuminating the critical qualities of novice computer science learning spaces by engaging

in a grounded-theoretical examination of first-hand accounts of novice learning as told by

computer science experts. To further study the topic, we attempted to recreate (in the lab) a

learning environment with many qualities that characterize non-institutional learning. To

make this possible, we employed a modified version of CodeSpells - a video game designed

to teach Java programming in a way that engenders the sense of sustained, playful, creative

exploration driven entirely by the learner. The study introduced forty girls, ages 10 to 12,

to programming for the first time. Table 1.2 demonstrates native programmer experiences

and, when integrated into learning experiences provides an authentic cultural experience for

novices.

We found that by leveraging the affordances of 3D video games, such as persis-

tence, we could enhance enculturation of novice programmers. However, mimicking

these categories isn’t simple. The story and metaphor of the game, and the activities

and challenges posed to the students, if well-designed, integrate the expertise of computer

science into CodeSpells so that the teacher does not need to have domain knowledge (see
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Figure 1.2. Students are presented with a series of quests that ask them to write code to
affect the environment, such as levitate a crate to collect bread.

Figures 1.3 and 1.2).

1.6.1 Wizardry is an Effective Metaphor for Computer Science and
Programming in a Video Game

Based on what was learned in the prototype study in Chapter 7, we iterated on the

design of CodeSpells and focused on supporting the embodiment of the players. Massive

multi-player online (MMO) games have been shown to enculturate players [144] and a multi-

player version of CodeSpells found similar results [60]. Chapter 8 discusses enculturation

embedded in a single-player version by reinforcing the metaphor of magic and wizardry

throughout the game-play. We address how CodeSpells uses the metaphor of wizardry,

along with an embodied API to engage students in learning to program in Java. Giving

novice programmers a visual and concrete representation of code, such as modifying an

image or moving objects on the screen, helps students understand the concept more easily

than abstract representations, such as sorting an array of numbers, but an embodied API

personalizes the experience even further. In our embodied API the code affects the player
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Figure 1.3. Students engage with code in a simple IDE where they have access to textual
code references.

and the world around them. This is an improvement on environments like Scratch or Alice

where the code affects a sprite because increased embodiment has been shown to improve

learning [96].

There have been many attempts to improve the novice learning experience by

providing: a visual programming language [101, 46], a hardware component [90, 2] or an

application that is more approachable [68]. CodeSpells’ contribution beyond previous work

is that students are better able to understand how abstract code affects the environment.

CodeSpells builds on previous work by immersing novices in the abstraction of

code through embodiment to allow them to understand complex and abstract programming

problems as if they were being affected by what they wrote. We present a new approach

to novice programming environments, one that embodies the user and encourages a quick

grasp of introductory concepts followed by a deep understanding through exploration.
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1.6.2 In-Game Activities that are Designed to Guide Skill Learning
and Enculturation for Children

The discussion has focused on the enculturation of children, Chapter 9 continues

with the skills development side of programming through CodeSpells. This Chapter presents

a study conducted using CodeSpells with a focus on the design and evaluation of quests

(scaffolding to support students in learning). The study analyzed how 16 students aged 8-12

understood and modified basic Java programs to complete programming exercises. Based

on game-play from an exploratory study, quests were added to engage students earlier and

in more complex code edits. Both student understanding of programming and their comfort

with modifying code was studied. I present the findings and lessons learned in quest design,

and show that quest design should set the expectation for students to engage with the code,

not just use the code. Therefore, the in-game activities that guide code-editing and writing

must require code-production so that students cannot play without producing any code.

Since code-writing is a major goal of CodeSpells, we determined that the design of

in-game activities that guide code-editing and writing result in novices actually writing code.

Similarly, when in-game activities fail to scaffold code production, students find a way to

play without ever achieving that goal.

1.6.3 Children Can Learn Skills and Become Enculturated While
Playing CodeSpells

Thus far I have presented results in designing a metaphor or magic and code-

producing quests. Chapter 10 combines the results presented in Chapters 7 through 9, and

implements a modification to the quests that requires code writing for all quests which

shows through an 8-week study that students can learn to program and become enculturated

through game-play.

The 8-week study was conducted on fifty-five 9-10 year old students across two

different schools. Throughout the study, students not only played CodeSpells, but also used
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a guided workbook to explore Java code outside of the CodeSpells virtual environment.

Through both immersive interactions and the guided workbook, students demonstrated their

understanding of introductory computing concepts and their ability to program in Java, both

on the computer, and on paper. Taken together, Chapters 6-10 show that a 3D role-playing

video game, employing an embodied metaphor and quests that demand coding provide the

elements of novice enculturation missing from traditional curricula.

1.7 Discussion and Future Work

The results from the preceding chapters, while powerful, are really just about two

interventions, the question remains about the generalize-ability of these contributions. In

Chapter 11, I show how the two initial interventions have potential to generalize past the two

settings I present in this dissertation. Specifically, based on the results found in Chapters 3

through 6, Section 11.1 explores how they could be applied to higher level computing

courses, not just introductory courses. Similarly, I explore how to apply what was learned in

Chapters 7 through 10 to other scalable learning environments. Before delving deeper into

the research of this dissertation, I will provide the background that supports this work.
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Learning and Enculturation

This dissertation contributes two frameworks for designing novice learning expe-

riences in computer science that are grounded in how people learn. In Chapter 1 I briefly

described how enculturation plays a major role in novices gaining expertise. In Chapters ??

through 10 I provide background research to support the contributions of each chapter. In

this chapter, I explore the theoretical background that supports enculturation and examples

in computer science. I focus on How People Learn [15] and Legitimate Peripheral Participa-

tion [87] because How People Learn is a survey of learning literation compiled from many

disciplines and Legitimate Peripheral Participation is a theory that clearly demonstrates

apprenticeship.

2.1 How People Learn: An Education Shift from Liter-
acy to Critical Thinking

In 2004, Bransford, Brown and Cockling compiled and edited “How People Learn”

[15], a book that collects recent developments in learning theories from various disciplines

and develops a cohesive understanding of how people learn. From the very beginning of

this book, they address the focus of this dissertation:

Work in social psychology, cognitive psychology, and anthropology is mak-
ing clear that all learning takes place in settings that have particular sets of
cultural and social norms and expectations and that these settings influence

18
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learning and transfer in powerful ways. [15]

Bransford et al. explain that formal education has historically focused on literacy

skills (reading, writing and calculating), but with societal developments there is a desire to

shift to teaching critical thinking and problem solving skills [15]. The learning experience

for students shifts to learning how to find information, not just understand facts. This

process is complex, students have to learn how to ask the right questions, understand the

relationship between the questions they are asking and the information they are receiving,

and draw conclusions to inform their learning. Essentially, the goal in changing their

learning experience is to contribute to “individuals’ more basic understanding of principles

of learning that can assist them in becoming self-sustaining, lifelong learners” [15]. Though

knowing facts is critical to problem solving and thinking critically, expertise requires that

students develop knowledge that is specifies context to support understanding and transfer

to other contexts, rather than “only the ability to remember” [15].

Furthermore, experts differ from novices in that they “have acquired extensive

knowledge that affects what they notice and how they organize, represent, and interpret

information in their environment” [15]. This supports the notion that “Learning is influenced

in fundamental ways by the context in which it takes place, [therefore] a community-

centered approach requires the development of norms for the classroom and school, as well

as connections to the outside world, that support core learning values.” Essentially, expertise

is achieved when skills and culture are integrated, culture representing the norms, values,

experiences, and contexts of a field.

In the next section I describe how the theory of Situated Learning, as described by

Lave and Wenger, can be used as the foundation for shifting to a more critical thinking

learning experience.
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2.2 Legitimate Peripheral Participation Supports Criti-
cal Thinking Development

As described above, learning should specify the contexts in which it is applicable

and depends on the development of community and culture within that discipline. Jean Lave

and Etienne Wenger introduce Situated Learning and Legitimate Peripheral Participation

that provide a framework for shifting the learning experience to be focused on critical

thinking [87] .

2.2.1 From Apprenticeship to Situated Learning: Legitimate Periph-
eral Participation

Situated learning is a theory that is far more complex than a series of apprenticeship

empirical cases. Though apprenticeship is a useful metaphor for representing the goal

of situated learning, Lave and Wenger developed a cognitive and cultural theory that

encompassed more than what was observable in historical examples. They defined learning,

similarly to Bransford, et al., emphasizing “comprehensive understanding involving the

whole person rather than ‘receiving’ a body of factual knowledge about the world; on activity

in and with the world; and on the view that agent, activity, and the world mutually constitute

each other” [87]. Furthermore, this supported their claim that all learning is situated “in the

lives of persons and in the culture that makes it possible” [87].

2.2.2 Full Legitimate Peripheral Participation is Expertise

Lave and Wenger explain that each word in ‘Legitimate Peripheral Participation’ is

required throughout the entire journey of a member of a discipline.

• Legitimate is what makes the participant belong to the community, defining a critical

performance to that community.

• Peripheral implies that there is no center of the community, because it is a community,
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and there isn’t a way to know all the knowledge of the community, because it is ever

changing and growing, particularly with the introduction of new members.

• Participation is required for learning to occur, which is supported with the theory of

“learning by doing”.

As a novice to a discipline continues to interact and participate within the community, they

become a full legitimate peripheral participant, where they have expertise in some areas, but

might be novice in others. The goal is to understand how to engage with the community,

how to discover and grow the area, how to communicate effectively with other members,

and how to guide newcomers into the community.

Thus far I have presented work that generally defines effective novice learning

experiences. Lave and Wenger define learning as “a theory of social practice in which

learning is viewed as an aspect of all activity” [87]. Furthermore, legitimate peripheral

participation was not intended to be an educational form that would transform schooling,

rather a pedagogical strategy for transforming learning. Both contributions have aimed to

deepen the learning experience for novice student; therefore concrete examples of these

approaches are necessary for evaluating them and improving learning for novices. I apply

these literatures to teaching computer science to undergraduates and children in a problem-

solving-based curriculum and software. In the next section I will focus on transformative,

concrete examples in computer science education research that align with the interventions

presented in my dissertation: novice undergraduates with access to a computer science

teacher and novice children without access to a computer science teacher.

2.3 In-Person Undergraduate Computer Science Courses
Can Integrate Enculturation

Undergraduate, in-person learning experiences in can be hugely beneficial to students

because a “master”, professor, is physically present and can guide the “apprentice” to develop
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Figure 2.1. In elementary school, students often have places where they can work collabo-
ratively and be interactive with their curriculum.

the skills and culture of the discipline. However, in-person education is difficult to scale; it

is limited by space, time, and people. For example, large undergraduate institutions have

designed large lecture halls that encourage information delivery: students all sit in rows

facing the front, acoustics are designed such that they can hear the professor who stands at

the front of the classroom looking towards them, and though boards are not always visible

from the back, large monitors can be seen from all around the room. This physical design

of undergraduate lecture halls is often restrictive to collaboration and interaction amongst

students; promoting, instead, a teach-centered environment where students are expected to

“retain” information and apply it on exams (see Figures 2.1 and 2.2).

Numerous studies show that traditional lecture-style courses that do not engage

novices in activities that would enculturate them yield lower learning results than courses

that are student-centered and include enculturation [139, 128] One approach to engaging

students in deeper understanding is to change the teaching technique used. Particularly in

higher education, various collaborative pedagogies have been employed and studied.

As Titterton et al. show [151], lac-centric courses improve student learning through

interactivity. Though an outstanding issue is scalability, their findings are insightful and
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Figure 2.2. The design of university lecture halls encourages students to listen to the
professor, limiting collaboration and interactivity.

can be applied to new contexts that are scalable. Titterton, Lewis and Clancy describe their

experiences engaging students in a lab-centric course in computer science and show that

students benefit from a constructivist, hands-on learning experience [151].

The course that they designed engaged the students in one hour of lecture and six

hours of closed-lab each week. Closed-lab is where students are expected to complete a

certain amount of tasks in a supervised lab in a certain amount of time. Labs are typically led

by teaching assistants, while lecture is typically taught by the instructor. Lab-time employed

a series of activities to engage the students, including:

• Quiz - Typically at the beginning of lab to test knowledge learned from the previous

class.

• Gated Collaboration - A question posed online; after answering the question, students

can see responses made by their classmates.

• Self Assessment - Embedded assessments with instant feedback.

• Exercise - Activity (programming or debugging) with no explicit assessment.

• Brainstorm/Reflection - A prompt to encourage reflection on the exercise.
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• Design/Defend discussion - Evaluation and refinement regarding design.

• Discussion.

• Project - A three- to four-week extended programming project

Table 1 in Titterton et al.’s paper describes each of these activities in more detail [151].

Titterton et al. provide a pedagogy that “fosters a kind of apprenticeship learning”

and “builds a community where we strive to avoid pitfalls present in other computer science

classrooms, such as the defensive climate” [151]. These support the goal to provide novices

with a sense or community and culture that integrates into their learning.

However, there are a number of constraints that can arise with this format, such as an

increased need for lab staff, an increased workload for the course instructor, and a need for

extensive lab space. Considering an issue facing computer science is an increase of students,

these constraints are only magnified. Though it is difficult to scale this exact model, there

are many lessons learned and best practices that can be drawn from it. The main take-aways

that apply to the integration of culture for novice computer scientists are:

• Providing a space for collaboration

• Conducting formative assessment throughout the learning experience

• Structuring and scaffolding programming

Each of these take-aways has many other examples that support their importance in students’

learning, as described by Titterton et al. [151]. The difficultly lies in executing an in-person

course that can be offered to hundreds of students at one time with limited teaching staff in

a traditional lecture-hall. The intervention that I designed, implemented and evaluated as

part of this dissertation follows similar designs to the course designed by Titterton et al.,

however it scales while retaining similar learning outcomes. Chapters 3 through 6 more

deeply explore each aspect of my intervention, including related work that supports each

piece.
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2.4 Software Programs for Children Learning Computer
Science Can Account for Lack of Teachers

In 2014 only 2% of public schools offered AP Computer Science and only 4% of

public schools offered some kind of computer science course (see Figure 2.3), meaning

nearly 10 million high school students do not have access to any computing course in school.

Furthermore, middle schools and elementary schools rarely offer computer science, and

when it is offered is it often a part of a university-led intervention that ends when the grant

expires. The cause of this major issue is the lack of trained teachers at these lower levels. In

2010 NSF sought to tackle this issue with the CS10K Project [150], however they quickly

realized that the money and time it takes to effectively train a K12 teacher to teach computer

science (or computational thinking) is beyond the reach of the NSF and public schools’

funding and support.

Software programs are being developed to better support children learning computer

science since training teachers is not easily scalable. These software programs range from

tutorial-based applications such as Codecademy [23] to sandbox-like environments such as

Scratch [101].

Scratch [101] is an online programming language and environment for novice

programmers. It was originally designed for children to increase the accessibility of pro-

gramming environments for kids. One Scratch’s biggest contributions is its collaborative,

community-driven online presence (see Figure 2.4. Scratch users are encouraged to build

programs of their own with a visual, drag-and-drop interface (see Figure 2.5), share with

the entire Scratch community (see Figure 2.6) and even remix other users projects (see Fig-

ure 2.7). These features align with community-driven learning environments, as described

above.

Scratch integrates culture and community into its programming experience through a

website that provides millions of users the ability to share, comment on, and further engage
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Figure 2.3. There are few computer science courses offered in public schools in the United
States
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Figure 2.4. Scratch homepage highlights the collaborative community.

user-written programs [131]. To date, the empirical literature on Scratch shows its success in

classrooms [107]; there are no published studies of unstructured learning. The intervention I

created as part of this dissertation, CodeSpells, expands upon the efforts of Scratch to further

engage children in skills development, as well as enculturation. Chapters 7 through 10

explore each feature of CodeSpells and the specific features pertaining to prior work.

2.5 My Two Interventions: Next Steps in Computer
Science Education Research

I seek to combine interactive learning strategies to scalable platforms for teaching

novices computer science. I have designed scalable interventions for undergraduates and

children, while retaining skills development and enculturation.
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Figure 2.5. Scratch’s interface offers a colorful, easy-to-learn programming language that
doesn’t rely on typing abilities. It also users students with tips to highlight software features
(seen on the right).

Figure 2.6. Scratch encourages users to share their projects with each other, forming a
community of users.

Figure 2.7. Scratch encourages users to view other users’ projects and edit them and make
them their own.
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Chapter 3

A Model Course to Enculturate Novices
in Computer Science using Peer Instruc-
tion

This chapter introduces CSE 3: Fluency in Information Technology, a course we

designed to enculturate non-computer science undergraduate students in into the field, and

sheds light on how any novice might become enculturated into computer science while

learning programming skills. Specifically, we describe a) the instructional design and

implementation and b) the student experience of a general-education computing course at

the University of California, San Diego.

Computing education is seen as increasingly important, with Wing and others arguing

for a grounding in fundamental computational principles for the entire population [161].

Actions are being taken to address this. For example, the UK Royal Society has been

commissioned to report on the state of computing education in UK schools [141], and the

US National Science Foundation and the College Board are supporting the development

an Advanced Placement course, CS Principles, which aims to “broaden participation in

computing and computer science” [41].

In Fall 2010, we ran a pilot of the CS Principles course at a US R1 institution. One

of five pilots, ours was unique in that it served the needs of a university general education

(GE) course for 570 students. This raised the question of how a GE computing course should

29
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be defined, or, put another way, what should every person know, assuming they never take

another computing course? In this report, we tell the story of our experiences in putting

together a GE course grounded in the CS Principles framework, and of how it impacted

students and our views of GE computing.

As we taught the course we paid close attention to the student experience, with all

authors attending all lectures and listening directly to students’ discussions in the class.

When prompted (in Week 8), the vast majority of students self-reported a range of long-

term gains as a result of taking the course. Analysis of their open-ended responses shows

students reporting increased confidence, changed views of technology in the world around

them, increased technical problem solving skills, transfer of computing skills to other areas

of their life and increased communication skills. Reports of “learning to program” were

very rare (and mostly limited to computing majors). These results were very compelling to

us as computing educators, with the following examples being representative:

We learned in Alice that computers do exactly what you have them do.

Programming allows a person to think more logically, thinking in order and debug-

ging allows the user to gain valuable problem solving skills. Aspiring to go to law school,

thinking logically is extremely important and I think this has helped.

It has given me confidence that I’m able to figure things out on a computer that I

never would have thought that I could do.

We will argue that the gains reported by the students form an excellent definition

of a general education course in computing. Notably we believe that engaging students

in “learning programming” is critical to the experience - as it provides students very direct

control over the computer. Finally, we draw conclusions on the ordering of computing

courses at the introductory level to maximize opportunity of access to computational thinking

skills development for all students.
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3.1 Instatiating a CS General Education Course

Here, we briefly overview the instructional design of our course - though we refer

the reader to full details in citepilot. Our course was based around:

• existing university needs for an academically-rigorous digital literacy course involving

logical thinking and the ability to create digital artifacts in subsequent courses,

• the CS Principles framework, particularly the six defined computational thinking

practices of analyzing effects of computation, creating computational artifacts, using

abstractions and models, analyzing problems and artifacts, communicating processes

and results, and working effectively in teams, and

• published experiences in teaching CS0-type courses.

It included 7 weeks of Alice programming [34] and 2 weeks of Microsoft Excel.

Alice is a beginners’ graphical programming environment: graphical both in the sense that

programs create and manipulate 3D worlds, and that writing programs consists of snapping

visual tiles together on screen. Most critically, we designed the course around a best-practice

pedagogy, Peer Instruction (PI) [104], to engage students in deep learning of computing

concepts. We made this decision a) based on the evidence from physics and other disciplines

that its use dramatically increases learning [39] and b) because it had worked well in

previous programming courses [137]. We were particularly interested in PI’s ability to

focus students on understanding how programs work, not just getting them to work.

In the standard PI model, before class, students gain preparatory knowledge typically

by reading the textbook and then complete a pre-lecture quiz on the material. In this

class, we leveraged the ability to have students work directly in the Alice programming

language to assign, exploratory homeworks - which guided them in reading the textbooks

for understanding [138]. During class, lecture was largely replaced by a series of multiple-

choice questions (MCQs). These typically focused on deep conceptual issues, common
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student misconceptions or problems [138]. Students followed a process by which they

answered a question individually (using a clicker), discussed in an assigned group of 3,

and answered a second time. This was followed by a class-wide discussion led by both

the students and the instructor. This is the core of the PI pedagogy. Additional course

components included a weekly 2-hour closed-lab programming assignment, one midterm,

one final, and a multi-week Alice programming project (“make a digital contribution to

communicate your views on an issue facing society”).

We hoped the PI methodology, with its focus on analysis and discussion, would

influence the students’ experience positively. Rather than simply “playing around” with

Alice, we believed that the PI activities would engage them in the authentic practices [19]

that underlie computing experts’ thinking and activities; that by asking them to analyze code

and discuss it with each other, they would experience via legitimate peripheral participation

what actually happens in software developers’ cubical walls, or in the IT support center of a

major company.

3.2 Student Experience

We sought answers to questions like: “What if this is the last computing course these

students ever take? What are they getting out of it? Does this satisfy us with regards to what

an informed populace should know?” We were teaching “programming” but our lectures

focused students on analyzing programs to illuminate core concepts. We personally don’t

believe “ability to write a program” should be a GE course goal. We asked students about

their experience in lab during Week 8:

Learning computing concepts may have opened many doors for you in your future

work. Although you may not ever use Alice again, some of the concepts you have learned

may become useful to you. Some examples include:

• Understanding that software applications sometimes don’t do what you expect, and
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being able to figure out how to make it do what you want.

• Being able to simulate large data sets to gain a deeper understanding of the effects of

the data.

• Understanding how software works and being able to learn any new software applica-

tion with more ease, i.e. Photoshop, Office, MovieMaker, etc.

Aside from the examples given, or enhancing the examples given, please describe a

situation in which you think the computing concepts you have learned will help you in the

future.

Though this question may seem leading, the topic had been discussed frequently in

lecture, and the question needed to be explicit enough for 500+ students to clearly understand

what “kind” of answer we sought. Students were informed that any thoughtful answer would

receive full credit. A few responses did imply that students had already “been good” as

using computers, and class hadn’t changed that. Through analysis of this data, we consider

students’ perceptions of the “general education in computing” effect of the course.

3.2.1 Methodology

After preliminary, ad-hoc review of the responses (N=521) by two of the authors,

one author developed a set of descriptive categories reflecting commonly observed themes.

Next that author and one other separately coded a random 10% sampling of the dataset,

discussed the results, and refined the categories and descriptions until reaching agreement

on that sampling. Then both individually coded a new 10% sampling, reaching an 85%

inter-rater reliability (counting matches for agreement on each code for each response).

Then one of those authors and the third author coded the remaining data (with the third

author reviewing the first 10% sample as a training set).
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Table 3.1. How the Course Will Help in Your Future: Categories of Student Responses
ordered by Prevalence

Category Example Response

Transfer, Near (64%): can apply new
skills in software use

Using new machinery like sound editing
equipment will require the ability to ma-
nipulate and design using the basic com-
mands to form unique creation. Similar to
Alice we will be restricted to the amount
of actions we can perform sometimes but
through our creativity we can manipulate
the basic commands of the music program
to create variations not standard to the
system. Like how we mad[e] frogs appear
to be hopping when in actuality the Alice
program does not have a specific method
that makes frogs hop.

Personal Problem Solving Ability: Debug-
ging (39%): can logic it out, attempt to or
deal with unexpected behavior

I have learned how to target problems
when I am working on a computer and
use the process of elimination to try to fix
the problem instead of just restarting the
computer like I used to. This skill partially
developed from taking CSE3 and becom-
ing more comfortable with working with
new computer programs and dealing with
bugs in Alice.

Personal Problem Solving Ability: Prob-
lem Design (29%): can develop plan to
solve technical problem, can see what
requirements exist

We learned in Alice that computers do
exactly what you have them do. Using
this knowledge, we can understand how
programs like Excel and Numbers work
and learn that when we are using these
programs, we need to specify and be exact
with what we are doing in order for the
programs to meet our needs and plans.

View of Technology (25%): greater appre-
ciation or understand of technology

Now, every time I find myself playing a
video game, I actually understand what
makes it work. That these games are not
magically produced, that it takes time,
skill, and sufficient funds to create these
games. I appreciate these games more
than before taking this class.
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Table 3.1. (Cont’d) How the Course Will Help in Your Future: Categories of Student
Responses ordered by Prevalence

Category Example Response

Transfer, Far (23%): can use problem
solving skills in other areas of life

I feel that learning the language of com-
puting definitely helps you understand
dense reading a lot more efficiently. I per-
sonally have noticed that my in-depth un-
derstanding of Computer Science wording
has helped me understand my mathemat-
ical theorems and proofs more regularly
than before.

Confidence (21%): increased ability to do
things on computer, a can-do attitude

The things I learned in Alice can help me
not to be so frightened in general when
dealing with technology. Although I am
not certain I have absolutely mastered
every concept in Alice, I am certain that
I have learned enough to bring me confi-
dence to apply these ideas in the techno-
logical world. This is a big deal for me, as
I do consider myself quite technologically
challenged. I think this class has given me
tools for life, that can be applied to both
my life at home, socially, and at work.

Communication (7%): communicate bet-
ter about technology

In today’s technologically-centered world,
using a program like Alice gives us valu-
able exposure to discussing things tech-
nically with other people and explaining
clearly what we are trying to do.

3.2.2 Results

The categories we identified are shown Table 3.1, along with prevalence (one

response could be coded into more than one category, avg. 2.1), with an example illuminating

the category.



www.manaraa.com

36

3.3 Discussion

Overall, we were satisfied at the ways in which the students felt the course experi-

ences had impacted them. We patently did not want students to think they were “made to

learn programming” and we specifically tried to differentiate the course from one seeking

to attract students into the CS major or prepare them to take another programming course.

Although the content of our syllabus doesn’t differ much from such courses, we utilized the

course design to engage students in a different experience - specifically through the in-class

peer instruction discussions.

3.3.1 The Student Responses Define General Education Computing

We argue that the students’ statements form a core understanding about what general

education in computing should be.

We recognize the students’ descriptions as a set of transferable skills and attitudes:

confidence to have a go with technology; a new appreciation/awareness of that technology;

problem solving skills to plan out solutions to problems and then to enact them, detecting

and correcting bugs along the way; and communication skills appropriate for discussing

issues about computing systems.

To rate the value of these skills, consider the typical knowledgeable IT person, the

colleague any office worker calls over when they’re having trouble with their PC. He or

she is the confident problem solver who can talk to you about your problem. Even though

they may not know directly about your software or your issue, they know they’ll get there

with some educated exploration. Their skills and attitudes bear a striking similarity to those

described by our students.

As to whether such skills should form part of a general education requirement, there

are two pertinent questions: do all citizens need this skill/attitude set; and is it necessary

to formally teach it? The recent push for a broader computing education indicates that
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society is beginning to accept the importance of computing skills for all; and we use

Turkle [153] to argue that a concerted effort is required. Turkle argues that the adoption

of computing technology to support our thinking processes has in fact shaped the way we

think. Specifically, the Apple Macintosh-style direct-manipulation interfaces introduced in

the 1980s encourage us not to look under the surface and not to attempt to understand or

appreciate systems deeply. She argues that we have been seduced into an expectation that

systems will be easy to use and we are surprised and unprepared when they aren’t.

As an example, consider a modern word processing package - a far cry from early,

glorified text editors like MacWrite. The underlying document model of the modern version

would have been the domain of a professional typesetter in years gone by, yet users expect

to be able to intuit the model largely via direct manipulation with what they see on screen.

The combination of increasing complexity with incorrect expectations only leads to

frustration. When software does something unexpected, most users have no training in how

to go about understanding what is going on, and few skills in identifying or correcting the

problems they are experiencing. Consequently, to them, software has become something

magical and beyond their control.

We can relate each of our students’ response categories to the manner in which

Turkle’s argument suggests most computer users are likely to think.

• Confidence: Software systems are too complex for me to understand. When they

don’t do what I want, I don’t know what to do. I can’t have an effect.

• Appreciation: I don’t have any insight into how the technology works and I’ve never

been encouraged to look “under the hood”.

• Problem solving: Software and computers are meant to be easy to use I shouldn’t

need to plan ahead to complete my task; when something happens I don’t expect, I

haven’t a clue where to start I have to get someone to help me.
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• Transfer: I’ve only just mastered Word. Now I’ve got to start all over again with Excel.

Nightmare! It’s a different world.

• Communication: I can’t get the IT person to understand my problem at all. It’s as if

he’s from a different planet.

We suggest that through our GE course, students gain the ability to balance the

inherent complexity of software against the knowledge that, with effort and use of appropriate

skills, they can understand the software or “figure it out”. In particular, they can understand

the complex models underlying software via a process of inductive reasoning based on

experimenting with the software.

3.3.2 Comparison with Existing “First” Computing Courses

In schools, there exist current courses that could possibly be viewed as a GE in

computing, varying from training in the use of IT, through programming courses, to the

introduction of computer science concepts. We assess whether these styles of courses are

likely to deliver experiences that our students described.

Before beginning, we acknowledge Papert’s early radical general intellectual training

based around programming in Logo [112]. There is much commonality between the skills

he describes his students developing and those described by our students. A key difference

is that of scale: our students are in a traditional mass education system whereas Papert

describes a more personalized self-exploratory learning environment.

IT Training Courses

IT Training is typically centered on the direct use of typical office-oriented packages.

For example, the Scottish education system features a 5-14 Information and Communication

Technologies (ICT) strand in its national curricula - traditionally involving follow-the-steps-

style worksheets [67]. Assessment often features simple factual recall or production of
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artifacts - and transferrability of skills is hard to assss. Crucially, such courses drive towards

outcomes such as “I can create a PowerPoint presentation”, rather than anything to do with

the understanding of or communication about how to be an effective IT user. In a survey

of over 2000 Scottish school pupils [109], it was clear that this curriculum was found to

be both boring and a totally inappropriate forerunner to later computing courses. Worse,

anecdotal evidence suggests that many incoming university students are barely-adequate IT

users. Furthermore, contrary to popular opinion, Bennett [8] demonstrates that the evidence

for Digital Natives [120] is far weaker than is widely reported.

Preparation for Programming Courses

These courses introduce the excitement of creating programmed artifacts without

going into the traditional heavyweight detail of a standard CS1. Examples include courses

that use robots or the Scratch [121], Alice, or Greenfoot [72] programming environments.

We are unable to ascertain whether students taking these classes have also experi-

enced changes similar to those our students report though published work does not report

such findings. In [111], students’ attitudes regarding interest in computing increased in an

elective Alice-based CS0 course. Our students were given the same survey, but no statis-

tically significant increase in attitudes occurred - perhaps because students’ interpretation

of the terms in the questions changed from pre-test to post-test; perhaps because they did

not choose to take the course and were not as likely to be pre-disposed to come to like

computing. In future work, we seek to better understand this result.

We speculate that the focus in these courses is typically on the excitement of getting

programs working, rather than on the deep understanding and articulation of what the

students did. For example, in [121], the digital fluency associated with Scratch involves

“designing, creating and inventing”. Teachers of course do want the deep understanding, but

much of the student activity and assessment, where there is any, is most-likely focused on

“can you do it?” As Section 4.3 shows, we view the core difference between our course and
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other programming-oriented courses is the emphasis on articulating deep understanding.

Non-Programming Introduction to Computer Science: Excite Programmers

There is a wide range of programs that aim to introduce computer science without

involving programming at machines. The best of these is CS Unplugged [6], and author

Cutts has run a similar effort called CS Inside [43]. Both the US and the UK are considering

adopting aspects of these programs into nascent school curricula. We refer to these as excite

programs, because a key aim is to excite participants about core aspects of CS in order

to increase enrollment in future computing courses. Indeed, the origins of both programs

lie firmly in university outreach activities. The activities of the programs were originally

designed for one-off, non-assessed sessions where excitement is the core goal, with learning

as a secondary goal. They do use active and often kinaesthetic learning methods that

undoubtedly are highly engaging for the participants.

We speculate that the learning activities of these programs will not form an effective

general education, as our students’ responses define it, for a number of reasons:

• Their main focus is to raise awareness of a broad range of computer science topics,

(e.g., data representation, algorithms, cryptography, intractability, etc.) rather than on

a narrower core set of transferable skills and attitudes.

• Whilst the active learning embedded in the activities does foster core skills such as

problem solving and group work, or core attitudes such as the deterministic nature of

algorithms (and hence programs and computers), the rather self-contained nature of

each learning activity goes against on-going step-wise development of these skills.

• Their separation from the world of software and machines is likely to make transfer

of core generic realizations about the structure and use of computer systems difficult.
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A Matter of Speculation

Here, we have only been able to speculate that alternative course formats considered

for introductory computing do not effectively fulfill a general education role. We urge those

teaching any of the formats covered here to replicate our open-ended reflection question,

presented in Section 3, with their students. Particularly interesting would be the effect on

students taking such courses as a requirement, as ours did, and not by elective choice.

3.3.3 Key Effects of the Instructional Design

The Peer Instruction Effect. We believe our instructional design centered in analyzing

code (in homeworks, discussion questions in class, and (naturally) programming labs)

impacted students. Certainly, instructors hope students in programming courses with

standard lecture develop code analysis skills, but it is rare that we focus class time engaging

students in that practice for themselves. Even in lab-based lecture environments, students’

work with live programming may not engage them in analysis. As Stephen Cooper advised

us [33], some students may just play around randomly trying things until they get the desired

result. From our classroom observations (two authors observed and engaged students in their

group discussions during lectures), the use of PI gave students the opportunity to viscerally

develop the understanding that computers are, likely contrary to their previous experiences,

deterministic, precise, and comprehensible. Through vigorous, constant engagement in the

struggle to not just create programs or learn to use computing concepts like looping and

abstraction, but instead to analyze, debug, and critique Alice code, students seem to have

internalized these three core attributes of computational systems. We see evidence of this in

some students’ responses regarding their experiences when something goes wrong on the

computer. They now recognize the problem might be the fault of the computer or it might

the fault of the user. This stands in contrast to their stated previous beliefs that it was always

their fault (or in some cases always the computer’s fault). This seems a critical first step in
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an increased sense of empowerment that should serve them positively in their futures.

Furthermore, the general education literature provides strong evidence in support

of the PI process as a way of promoting deep learning. Teasley [148] demonstrates that

speaking out one’s understanding improves learning; articulating it to a peer even more so.

Craig et al. [37] show that paired learners gain as much from watching a video of a tutor

at work with another student as from one-to-one tutoring - interesting for the similarities

to class-wide discussion (a form of dialogue between individuals seeking clarification and

the instructor). Finally, Karpicke has shown in a number of studies, e.g. [82], that testing

promotes more learning than studying. We are testing students in every class session, both

with the quiz and discussion questions.

Programming with a Visual Execution Model. Could we provide students an equiva-

lent experience by teaching a PI-based course using Excel or other computing applications?

Our experience suggests that the value of a visual, scaffolded novice programming envi-

ronment like Alice is that it provides students the most direct form of interaction with the

computer possible programming language- level control without the distraction of syntax

errors and in a way such that every part of their program’s execution is visible to them (we

didn’t cover the topic of variables). Crucially, the mapping from their program code to an

observable execution model is very straightforward. To the extent that other existing or

future environments meet these criteria, we believe they would work effectively, too. Key

is that students engage with a basic programming interface that manages cognitive load,

enabling them to focus on core computational concepts.

Instructor Recommendations. Specifically because the technical content of this

course matches that of typical introductory programming courses, it is especially important

for the instructor to stay focused on the GE goals of the course. It is challenging to change

one’s habits from rewarding and assessing success in creating programs to success in

analyzing and communicating about programs. How does this challenge play out in class?
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While clicker questions in class may ask students to select a line of code to complete a

program, or to read a program and select a description of what the code does - the manner

in which the instructor must interpret students’ clicker votes to the question must reflect

the goal of analysis, not correctness. Even if more than 95% of the class gets a question

correct, that doesn’t mean that students have a thoroughly correct understanding of why the

answer is right. Moreover, they must still be given the opportunity to practice discussion of

the question, providing their explanations to each other, engaging in interactive questioning

and justification, and modeling for each other’s methods of thinking about the problem. In

class-wide discussions, as many students as possible should be asked to explain in their

own words, both why the correct answer is correct, but also how they figured out the other

answers were wrong.

Even more challenging for the instructor is to consider completely different kinds of

questions than one traditionally asks on introductory programming exams; questions that

ask what is the best explanation of why something is (e.g. why do we used a counted (for)

loop instead of a while loop) and even questions (on exams) that ask students to not only

give an answer, but to explain their analysis that led them to that answer. Testing whether

students can merely “write code”, with no other explanation or analysis required, seems to

be of limited importance.

3.3.4 General Education First: An issue of Equity?

From our experiences of deep reading of students’ reports on the impact of the class,

we propose that one feature underlies many of our coded categories: the experience of

coming to a new understanding of what a computer is and how one can interact with it.

Overall students seem to grasp that computers are:

1. Deterministic - they do what you tell them to do

2. Precise - they do exactly what you tell them to do, and
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3. Comprehensible - the operation of computers can be analyzed and understood.

Is it possible that this visceral understanding (compared to acceptance of telling or

quasi-belief) lies at the core of the development of computational thinking skills? Moreover,

if one does not yet have this core understanding (as it seems many of our highly-selected

college students did not), what is the impact of, for example, a CS Unplugged activity on

cryptography, or a course on using Excel effectively for data analysis?

Author Cutts has extensive experience of working with Scottish school teachers and

pupils to instill discipline-appreciation through CS Unplugged-style activities. From his

experiences, students may overwhelmingly report increased excitement or interest from

these experiences, but measurements of learning vary - with a large portion of students

seeming having missed even the basic points of the session. This is reflective of learning

reports in introductory computing courses. Even in those courses (perhaps CS0) targeted to

work with students of any ability, the performance gap for some students seems unassailable.

Every instructor has anecdotes of students trying earnestly to master programming, but still

failing, if not the course, then failing to develop deep understanding of the core concepts. It

is only natural, given repeated experiences, that this may lead instructors to adopt a fixed

mindset regarding some students’ abilities to program. The myth of the programming gene

is not so easily dismissed by any experienced instructor.

We posit that lack of understanding that computers are deterministic, precise and

comprehensible may be a key factor leading many to struggle, seemingly in vain. Certainly,

many students might enter our courses lacking this belief. But some may come to develop

it on their own and others may simply be willing to accept yet more incomprehensible

magic in the process of programming. We suggest that only some students, with a possibly

indefinable set of life experiences, enter our classrooms believing computers can make sense

and be reasoned with. Reiterating Turkle’s argument [153], as computing has embraced

“more intuitive” human interfaces, we have likely actively discouraged attempts to reason
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about computer interactions.

Core Competencies Before Appreciation. We propose that the community fur-

ther study the effect of combinations of general education and excitement or discipline-

appreciation courses. Based on our students’ claims of the confidence and ability they

will have in future engagement with computers and in their increased understanding of

where computing concepts exist in their everyday technology use, we propose excitement

and discipline appreciation courses will be much more effective when preceded by a GE

computing course. As a comparison, multiplication (let alone any advanced mathematical

concept) is likely a mystery when taught to students lacking understanding of addition.

It’s true, as outreach instructors, we may not have as much fun or personal excitement

in teaching a course with the design and goals as outlined here. Not surprisingly, English

teachers usually prefer to teach specializations such as poetry or Shakespearean Literature

over basic composition. This may be a combination of the fact that students have already

moved a bit up the expertise ladder making them easier to communicate and work with. It

may be because these courses allow instructors to better share their passion for a deeper and

more nuanced engagement with their subject. It may be that students are more likely to be

in such courses based on their own choice, rather than as a requirement. But we suggest that

instructors consider the deeply rewarding contribution that lies in opening the eyes of all to

the skills and attitudes required to live in the computing age.

Where Have You Left Them? Is 7 weeks of Alice and 2 weeks of Excel, with a

carefully supporting instructional design, sufficient to define the grounding in the funda-

mental principles of computation? Perhaps not. This course didn’t even cover variables.

Yet students seem to feel they have been given the keys to do something useful, something

meaningful - with a minimum subset of computational elements. Given more time, one

can prioritize more experiences or understandings we want all citizens to have. However,

unless starting with programming, these efforts will be hamstrung. We look with interest to
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see how others adopt and expand this curriculum. Interestingly, by the end of this course,

students not only change their views on computing, but they get a significant springboard

into traditional introductory programming education. In the short term, this seems a valuable

component of any computing course taken by many.

3.4 Conclusions

We encourage the community to consider the needs of a GE curriculum in com-

puting - in contrast to and in conjunction with courses designed to interest students in the

field. We provide an example of engaging best-practice pedagogy in teaching a supportive

programming language (e.g. Alice) and see that students report gaining long-term skills and

confidence as a result of the course, outcomes that we view as core for a GE in computing.

Based on our experiences, we hypothesize that GE computing courses should be taken

before other computing courses: including application skills courses, excitement courses, or

more mainstream programming courses. Moreover, we posit that doing so is a key matter of

improving the equity of access to learning in those courses. We encourage the computing

education community to engage with GE courses that lift the veil of secrecy and elitism

from the field and use of computing.
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Chapter 4

Student Experiences with Enculturation
in a Student-Centered Peer Instruction
Classroom

In Chapter 3 we discovered that Peer Instruction affected the students enculturation

throughout the course. In this chapter, we focus on the students’ experiences with peer

instruction, compared with courses that do not offer peer instruction. Using Chi’s ICAP

framework (described below) we determine the differences in engagement with the material

during lecture, showing that Peer Instruction leads to a more interactive lecture, supporting

students in a collaborative, community-based learning experience.

4.1 Support for Using Peer Instruction

There are numerous reports showing Peer Instruction, as one form of a student-

centered learning environment, to be successful. This has been measured at the course

level through pre-post concept inventory tests [39, 70] and final exam performance [139].

Even more directly, learning from the attempt to solve a “clicker” question, peer discussion,

and instructor explanation and feedback has been measured in-class through the use of

isomorphic questions in the classroom [118, 140].

Recent results showing a dramatic 61% average reduction in course fail rate [116]

across 16 PI instances of 4 different computing courses taught by 7 instructors leads one to

47
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wonder: is there some other effect impacting student persistence? Or is it just the difference

in the 3 hours a week spent learning in the PI classroom? Certainly, students in PI courses

benefit from having a clear idea of what an instructor wants them to know, and whether

or not they know it (assuming clicker questions reflect knowledge and skills measured in

course assessments). But, as instructors in similar courses, we have noted something else - a

different student attitude towards the course and towards learning.

Existing literature has reported Likert-scale attitudinal surveys showing students

both enjoy and value PI classrooms [115, 137]. But why? Is it because they are getting

better grades? Because they don’t fall asleep?

In this study, we provide preliminary documentation of both student experience and

student valuation of their experience in a successful PI class [139]. We asked students to

self-report their experience in the PI classroom through a post-term open-ended question

asking them to describe what they did (in lecture) in this class and compare it to their

experiences in other classes. Their answers indicate a deep, thoughtful, and affective

experience with our PI learning environment. We believe the character of these responses

will help us better understand what contributes to the overall “success” of PI - spanning

both cognitive and socio-psychological effects. Moreover, these results may have bearing

on other student-centric techniques (i.e., POGIL, PLTL, PBL).

First we use the Interactive-Constructive-Active-Passive (ICAP) framework proposed

by Chi for rigorously delineating student activity in learning environments [22]. This

framework differentiates overt, observable classroom activities based on their engagement

of students in the learning process. Most valuable for student learning are interactive and

constructive activities. Less engaged “active” behaviors include taking notes and listening

to lecture, compared to “passively” daydreaming or browsing the web. Coding our data, we

find students describe activities in the PI course as constructive and interactive, and behavior

in other courses as passive and active. These results help document why we expect improved
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student learning: students, not surprisingly, report engaging in activities associated with

better learning.

Additionally, in these rich responses, students shared their views on their experience

in the classroom - the grand majority of which were positive. Students describe the PI

classroom as providing a better setting, and therefore an increased opportunity, for learning.

They cite this improvement based on increased feedback and an opportunity to develop

deeper understanding through engagement with, and discussion of, challenging questions.

However, the collective student response ranged far beyond the more measurable

“learning” experience. Specifically, prominent in many of the student responses are the very

socio-psychological issues often noted in the research on why post-secondary students leave

STEM fields [152]. These range from affective experiences of enjoyment and comfort in

the classroom to extensive and varied experience with an increased sense of community.

We perform an open-coding analysis of student responses to better understand the student

experience. By taking a “student-centric” approach to understanding the student experience

(i.e. asking them directly), we contribute to a more nuanced understanding of effective

student-centered classrooms.

4.2 Related Work

Peer Instruction (PI) is the pedagogical classroom practice of (1) asking students to

answer a question individually (often using clickers), (2) having them discuss the question

in groups, (3) having them answer the question again (often using clickers), (4) having the

instructor lead a class-wide discussion based on the student responses, and (5) the instructor

dynamically adjusting class content based on student performance. Peer instruction was

originally developed in physics [39] and has been shown to cause a two-fold improvement

in student performance on concept inventories in multi-institutional studies [39].

PI is relatively new in computer science classrooms, but a recent wave of computer
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science education research has shown that students value PI and recommend more instructors

use this practice in both large institutions and small colleges [115, 137], that instructors

value PI [117], that real learning occurs during student discussions [118], that PI students

achieve a 6% higher final exam grade than their standard instruction counterparts on identical

final exams [139], that PI reduces failure rates by 61% on average across four computer

science courses [116], and that PI (along with Media Computation and Pair Programming)

contributes to a 31% increase in retention of majors [119].

The courses we are describing here were also developed under very specific learning

theories. In [19] Brown et al. describe situated cognition wherein they argue that “knowl-

edge is situated, being in part a product of the activity, context, and culture in which it is

developed and used.” They posit that learning, or knowledge, is not in the information itself,

but in the way in which learners acquire the knowledge and practice it. Since the goal of

the course was to have students understand and be able to discuss computing concepts and

problems, the instructor wrote PI questions that would engage the students in addressing

the problems they would address in the future in a similar context. In this course students

acquired knowledge through actual discussions and interaction with peers.

Furthermore, constructivist learning [15] describes learning to occur only when

students are able to build on pre-existing knowledge. Encouraging the students to discuss

during the PI course allowed students to evaluate their understanding, compare it to the

understanding of their peers, and discuss why an understanding was incorrect. This allowed

students to self-identify when their model was incorrect and construct a new model. In

[40] we have seen that demos often hides the students’ misunderstandings from them, and

therefore students attempt to force what they are watching or hearing into their incorrect

model. We can see that Chi’s ICAP framework clearly describes constructivist learning

to occur in constructive and interactive activities whereas in passive or active activities

students are not modifying their existing model [22].
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The work most closely related to this investigation is the work by Gaffney et al. [63]

on how active learning pedagogies violate students’ initial expectations of the classroom.

Investigating multiple classes using the Student Centered Active Learning Environment

for Undergraduate Programs (SCALE-UP), Gaffney et al. found that the shift in student

expectations was generally positive. They also provide advice to instructors on how best to

orient students to the changed atmosphere. Their work is complementary to this work, as

this work focuses how students feel their role in the classroom changes and their work aims

to help us better prepare them for the new classroom environment.

4.3 Methodology

The CS0 in this study was taught at a large, research-intensive, public university

in Winter 2012 using a PI approach (N=84). Of specific note, as this was a non-majors

computing course, the instructor explicitly communicated to students that the goal of

the course was not simply to teach them to program, but to help them understand and

develop skills in analyzing computer programs in detail and to understand the core concepts

underlying all computer program execution (repeated and conditional execution, abstraction,

etc.). A core mantra of the course was to learn to think like computer scientists think, so as

to be better prepared to go on to learn any new computer program or application needed in

one’s future career in any discipline. We believe this explicit focus on “learning to learn” is

important to this study and should have impacted students’ views on their role in the class.

4.3.1 Course Characteristics

Previous reporting on this course documents it as a “successful” PI course in that

students experienced better learning outcomes than in a comparable standard instructional

format (scoring higher on an identical final exam) [139]. In accordance with standard PI

methodologies, students were assigned pre-class preparation (reading the textbook and being
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asked to follow along creating the Alice programs described in the book [56]). This work

was incentivized by a short quiz at the beginning of each class. Lecture was comprised, in

the main, by a series of “clicker discussion questions” where a challenging issue from the

day’s material was asked and answered via the following process:

1. Students answered individually with a clicker

2. Students discussed the question in assigned groups of three. The instructor and tutors

would walk around listening in and could interact with students.

3. Students voted again. To incentivize groups to engage in step 2, groups were told to

come to a consensus and all vote the same way.

4. A class-wide discussion was run, usually started by the instructor asking several

groups to share their thinking and discussion. The instructor would wrap up the

discussion, varying her explanation depth and detail based on students’ success in

answering and explaining the question.

Questions were interspersed with mini-lecture and Alice live coding demonstrations

to back-up and/or further extend the concepts in the clicker questions.

4.3.2 Student Survey

Students were surveyed on their experiences in the course as part of a “take home

final” at the end of the course. Here we analyze student response to the following open-ended

question:

Compare and contrast your role as a student in *this* course’s LECTURE with

other “standard” course lectures. That is, what are you here to do in this lecture? In other

courses’ lectures? Answer with an essay of 150 words or longer. Any thoughtful answer

(positive or negative) is desired.
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To counter concerns that the reported experiences may be purely instructor-driven,

we analyze student responses in both this PI section and a standard instruction (SI) class

(N=124), led by the same instructor, at the same institution, in the same term, and with the

same learning goals. The standard instruction version of the class is described in depth in

[139], but included slide-based lecture and live coding demos where the instructor posed

questions to both engage students and help them attend to important issues. Notably, the

instructor received identical, very high student satisfaction evaluations in both courses.

4.3.3 Student Classroom Activities

In 2008 Chi recognized that research in cognitive and learning science inconsistently

and unclearly used common terms such as passive, active, constructive and interactive [22].

She proposed a framework specifically describing these phrases in terms of observable, overt

activities. Her ICAP framework provides evidence from literature to support a hypothesis

that increased learning comes at the highest level of interaction. Each student response to

the “role” question in 4.3.2 was coded passive, active, constructive or interactive according

to overt activities they describe. Since the question asks students to compare their role in

this class against a “standard” course, we coded both their response to the computer science

course as well as the “standard” course (if they describe behaviors in the “standard” course).

Our coding scheme adhered to the following descriptions of each level of student activity:

• Passive: Not engaged in lecture by doing something else (daydreaming, facebook,

zoning out, etc.) or not attending.

• Active: Listening to lecture and/or taking notes.

• Constructive: Solving problems on their own. Reflecting on their own understanding.

Justifying, explaining, and asking questions of the instructor.

• Interactive: Argue/explain concepts with other students. Learn from or teach a
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partner.

An important note for the reader who is familiar with the term “Active Learning” is

that Chi describes active activities to be what some might call passive (e.g. taking notes, or

listening to lecture). We believe that “Active Learning” would fall into either constructive

or interactive in Chi’s Framework.

Student submissions, predominately for the SI course, would often vaguely refer to

improved learning, more engagement, or more interaction as a result of the in-class demos.

Though students were describing these experiences, we only coded on actual activities they

described. For example, if a student said they “learned a lot from watching demos and the

class was interactive,” this would be categorized as active because they did not describe any

activity aside from watching demos.

Quotes were categorized using the highest Chi category, for example, if a student

described attentively listening and then also described interacting with their peers, it would

be marked as interactive. We categorized the data from both the standard lecture and the

peer instruction lecture combined together with no indication of course, and then separated

the data. We had two authors categorize 10% of the data at a time until they reached an 85%

inter-rater reliability. Then the rest of the data was split evenly between the two authors and

categorized.

4.3.4 Student Reflection and Valuation

To further describe the variation of student experience in the PI lecture, we performed

a grounded theory analysis. Due to both the exploratory nature of our work, and the

limitations of our dataset, we performed only the first level of analysis in the grounded

theory methodology - open coding. Open coding involves “fracturing data and making

connections” through a process of noting and labeling categories [35]. Also known as the

constant comparative method, the goal of analysis using grounded theory is not to quantify
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or reduce a data set to what is frequently experienced, but instead to seek to provide a rich

description of the scope of variation of experience in a situation - so as to inform future

theory development that should be applicable in the setting observed.

Open coding was performed by two authors, each reviewing one-half of the PI

section responses and identifying phrases which augmented understanding of student experi-

ence beyond strict activity definition. Each author developed an emergent set of category

names, which provided an organizational structure to the phrases. After discussing both

categorizations and after one author coded the half originally coded by the other author, a

structure of categories emerged that communicated the variation observed in the data.

4.4 Threats to Validity

There are threats to the validity of this study, as is common for analysis of qualitative

data. Of greatest note, and as mentioned in the methodology, is that students’ responses

and depths of thought about their role as a learner in this course may have been affected

by the explicit goal of the course to prepare students to be confident and more successful

in future computer use. Compared to, for example, a foreign language course where the

primary learning outcome would be to develop student ability to understand and speak

in a foreign language, our course specifically did not emphasize a learning outcome of

being able to write code in Alice. Instead, we explicitly and frequently reinforced with

students that we were only using Alice to help them understand the basic “language” which

underlies all computer applications; and that our goal was that they would be able to use this

understanding in whatever technology and computer use they might face in their careers in

the future. This greater focus on “learning to learn in future situations” may have impacted

students’ metacognitive view of their goal as a learner in lecture.

Secondly, three authors were heavily involved in the development of the course,

though only one served in an instructional capacity in these specific course offerings. All
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Table 4.1. Chi categories for CS0 PI course versus another course

Passive Active Constructive Interactive

CS0 Peer Instruc-
tion

0% 2.4% 12.2% 85.4%

Other college
courses

16.4% 79.1% 4.5% 0%

authors have been involved in the offering of PI-based courses and bring to this study their

perception of the changed experience and engagement of students, as they perceive it during

lectures. However, the purpose of the post-hoc analysis of students’ own responses in this

study serves as a different and hopefully more individual and accurate documentation of

students’ experiences in the classroom than merely a report from the instructor’s point of

view. Still, a post-hoc, short answer question cannot possibly provide sufficient evidence for

the development of a theory of student experience in the PI classroom. This study means to

serve as initial data to help inform effective design of a more thorough ethnographic study.

4.5 Results

We analyze our data from two perspectives: characterizing type of activity and

describing student perception of that activity.

4.5.1 Student Activity Characterization

In Table 1 we find that the activities during the CS0 PI lecture are very different from

other courses the students described. The majority (85%) of the students said they did some

kind of interactive activity: “I felt I had more of a role as a “student-teacher” than a student.

I was extremely happy about this because it helped me reexamine the material in a different

way while explaining it to another student.” No student described any interactive activity in

other courses they took at the university, but instead described activities as passive “In other

lectures it is easy to get distracted and not really be paying attention to what the professor
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is teaching” or active “In other course’s, I feel like a lump on a log that soaks up whatever

information I can squeeze onto my notes/slides that the professor has us print off.”

Students sometimes did not describe the interactive activities that might usually

occur in a PI course (peer discussions), but still described constructive activities where

they were constructing their understanding through effortful activities. For example, “In

this class, you must stay active in order to answer the questions, so it keeps you focused on

the task at hand.” Though the clicker questions were coupled with group discussions, this

student only described the activity of answering the questions throughout lecture, but did

not describe the interactions with their peers.

There were still some students who described only an active role in the PI course.

Though students might have been implying a constructive or interactive role, we only

coded those with specific evidence. For example, this student only describes an active role

in the course “The course is really hands on and visual, which helps me learn.”

A possible concern is that it is merely a characteristic (e.g., the personality) of

the instructor that causes students to describe the engagement that they do - regardless of

instructional method. To assess this possibility, we coded student responses to the role

question given in a standard instruction (SI) version of the course taught by the same

professor in the same quarter (reported in detail in [139]). In the SI course, only 4% of

the students described interactive activities and 24% described constructive. 67% of the

students described only active activities, which indicates that the difference in instructional

method is what drove the students to be interactive rather than passive. However, we

urge the reader to interpret these results with care: these students had not experienced peer

instruction and their responses are not comparable to those of PI students. Indeed, these

SI students respond to the question by comparing a “computer science” course (with live

coding) to non-computing courses. But the results indicate student activity in the course is

not merely a result of a characteristic of the instructor.
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4.5.2 Analyzing Student Reflection/Valuation

Affect

The course had a strong influence on student affect, both on how comfortable they

felt as learners because of a perceived permission to be unsure and to ask questions, and

on how much they enjoyed the course. Comfort. One student wrote that the course design

“made for a very comfortable learning environment. There was no stress or embarrassment;

one could speak their mind freely.” A student who had previously failed classes and was on

academic probation wrote “I recognize my responsibility to do pre-reading, but sometimes I

struggle with certain topics. The professor made sure to cover every detail and as a student

I felt way more confident in this class than in other classes.” This student earned an A

grade in the class. Casting this in the light of Dweck’s work on self efficacy, the learning

environment clearly promotes a growth mindset, where it is accepted that learning involves

struggle and asking for help and feedback is necessary at times [50]. More importantly, it

was clear to the students that the instructor knew this: “It made me comfortable to know I

could ask a question and others could too, and receive feedback (that was actually wanted

by the instructor).”

Enjoy. Students noted their enjoyment of the class, with a sense of surprise: “for

once this class was actually quite fun”, “the transition of my attitude [towards enjoying

in-class discussion] is unexpected”, and “it made me realize how boring other classes can be

when the prof is just rambling on about something half the class might not understand”. One

student alluded to how the negativity associated with getting an answer wrong was turned

around through discussion with peers: “we get to redeem ourselves by talking amongst one

another to further our knowledge. I enjoy the discussion part of class because it allows my

classmates and I to participate in learning too.”
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Social/Community

Many students wrote of the shift from individual learner to being a member of a

community of learners.

Responsibility to team. The requirement to work in groups increased the importance

of preparing for class: “having done the homework actually had an effect on what I did in

class and could possibly affect my partners’ group discussions.” They were no longer doing

it only for themselves but also to ensure that their peers fared well. Note that students refer

to this responsibility in terms of their peers’ learning and not to their grade, when in fact

credit for working effectively together was based only on the members of each discussion

group answering the same way. Furthermore, the learning of the whole class emerges as an

important feature. For example, “It wasn’t only about your learning but also everyone else

in the class learning as well”, “in this class, everyone is encouraged to learn and everyone

must learn so that no one is left behind”, and “I had a wider array of responsibilities in this

class because I had to interact and be involved in the group and class-wide discussion ...

almost the entire time”. Students appear almost proud of their contributory role in class:

“I was not only a receiver but a giver in the class”, “encouraged to help others to learn

while also furthering our understanding”, “we [discussion group] made sure that all of us

understood what was going on, taught each other along the way.”

Connection to professor. While not explicitly responsible, students also indicated a

greater connection to the professor - even in the large lecture hall. “I feel more connected

with the professor who takes her time to hear our opinions.”

Participation. Students report having permission to speak out in the class, and

thereby being an active participant in the lecture: “Every student has the opportunity to

participate”, “I was involved in the lecture, not just a sponge trying to absorb everything the

instructor is saying” and “I can express my opinion to all”. There is no sense of coercion

in these statements, no sense that the students had to speak out, further contributing to the
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inclusive quality of the learning environment. Some found participating hard initially, but

worked it: “I may still be reluctant to speak in front of the whole class, but now I feel really

comfortable to express my thoughts and opinions to my partners.”

Social and academic inclusion. Other lectures are reported to be isolating experi-

ences: “It is easy to feel lost in a lecture hall of hundreds of students”, “in other classes

I often feel isolated ... since there isn’t a value placed on discussion with other students

to cement the topics”. The PI class is significantly different: “I now enjoy it because I

know my partners pretty well and have made new friends from the class”, “This has been

my favorite class for the simple fact that it was an open environment”. The isolation of

traditional lectures spills over into the students’ perception of learning: “In other classes,

I have to learn everything by myself”. This isolation transfers to study outside lectures as

well:“In other classes, I have to do homework and study alone and hope that my explanation

is correct”. This student may be indicating that in the PI class, he/she works with other

students outside lecture, or that homework/study outside lecture is still undertaken on their

own, but that the in-lecture experience provides feedback on their learning.

Negative: group consensus. A student admitted to being initially skeptical about

the format, but came to the realization that he learned by discussing with others. Nonetheless,

he continued to be bothered by the incentives to work in his group saying, “I did not like

how we needed to have a group vote for discussions.”

Learning

The main bulk of student comments that we identified relate, not unsurprisingly, to

the students’ learning in the class.

Understanding. Students note in general terms that their level of understanding is

deeper: “[the course helps to] solidify the topics so we remember and understand rather

than memorize”, “discussions helped me to understand ... ‘why’ I chose an answer”, “I

can see all sides and get a thorough understanding of what is right or not”, “better than
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... (reading textbook, just listening, taking notes (frantically)) I come to lecture to solve

problems and not just have information thrown at me”.

Students explicitly refer to critical thinking: “[being required to] provide input in

lectures is what makes us think critically”, “in other classes the teacher just lectures instead

of promoting critical thinking”. Students note that they are developing reasoning skills:

“one may be encouraged to actually use reasoning, if one does not know the answer” and

“by discussing with my classmates, I learn how to defend my choice by backing it up with

evidence or by examples.”

Crucial aspects of deeper learning are identified. Examples include: the benefit

of working through wrong answers - “Discussions helped me to understand why I chose

the wrong answer along with why the right answer is the correct one” and “the professor

was really good at picking [distractor] answers because it gave us a chance to think the

answers through critically”; multiple ways of thinking about a problem - “I had a role

as a student-teacher. [This] helped me re-examine the material in a different way while

explaining to another student”, “having others participate and share ... their thoughts ...

definitely helped in opening my eyes to different ways of thinking” and “conversations ...

with my classmates help me to see their point of view and how they think about questions”;

and finally, the opportunity to consolidate learning - “repeating concepts really helped me

understand” and “my skills that I had learned in lecture were constantly tested in every

lecture and every lab”.

Feedback. Students wrote both about the feedback they received from, and also

about the feedback they provided to, the instructor, underlining the connected nature of the

class.

Votes and discussion in class were “encouraged and desired” by the instructor,

enabling her to “adjust the class discussion, which was very helpful in building knowledge

when my group decided it wanted to talk to make it [the class discussion] focus more on
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areas people don’t truly understand.” This adjustment to the students’ needs positively

affects the pace of classes: “This course moved at a reasonable pace, allowing me to take

time to make sure I understood each concept, and asking the TA for help when I encountered

any confusion.” Other classes are noted as “impersonal, move too fast, lose my attention”.

Feedback to the students was clearly important also: “it gave me instant feedback

and allowed me to know if I made a mistake ... not something I can normally do in other

lectures”, “knowing right away whether or not my answer was correct was also really

helpful to my learning because I could understand what areas I was lacking in right away”,

and “in this forum-like, communal class, I had the assurance that my understanding ... was

correct and allowed me to further my knowledge more effectively”. A comparison with

knowledge-filled lectures was made: “in other courses, I usually do not participate because

the class is big and everybody just receives knowledge instead of feedback”. The course

structure amplified what the student needed to know or be able to do: “makes it clear what

we have to know and what we need to focus on”.

Efficiency. Students found the time spent in class to be more beneficial than in other

classes: “I learn the information a lot easier, more efficiently”, “I have never had a class

like this in which I felt by the end of class that I truly had a grasp of the material”, compared

to “in most other classes I walk out feeling as if I had learned nothing and have a lot more

studying to do on my own”. This represents a shift in effort from outside lecture to inside,

with a consequent overall reduction in time spent on the course: “as a student in lecture,

the course demands much more - but overall, this course demands much less, seeing as

demanding participation in lecture facilitates and requires learning”, also expressed, at its

simplest, as: “better learning with less out of class study time”. That said, some students

wanted greater efficiency saying “Sometimes it would get repetitive on very simple topics

which would cause my group to stop working.”

textbfAuthenticity. A few comments referred to a perceived lack of authenticity in
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the learning environment. “Still not doing what you are learning... it would have been more

helpful if we had done most of the learning in the labs with the tutors showing us how to do

it instead of trying to make us figure it out from the reading” indicates that the instructor had

failed to make it clear to this student that a primary aim of the course was to get students

doing exactly this kind of “figuring out”. “Clickers create a fake learning environment

where most of the students are just sitting there clicking buttons and not really caring about

the learning but just about getting points” does not seem to be supported by the responses

from other students, though was felt by at least one.

Flipped Structure

The format of the course, with preparatory work assessed using a quiz at the start of

each lecture followed by regular questions and discussion, influenced students’ preparation

for and attendance at class, as well as the level of their focus on the material covered.

Preparation. Students reported that the PI format requiring them to be prepared for

class was a benefit, both as a primer to the class itself: “mandatory pre-reading really useful

because you get the general idea what you gonna learn in class” and to enable participation

in the group discussion: “practically required that you do the homework and pay attention

just so you can contribute in class”. Quizzes were a driving factor in completing the

preparatory work, although this represented a challenge to the workload balance between

courses: “the quizzes ... made it critical that you had done the reading and the exploratory

homework and that also helped learn better. The only difficult part was keeping up because

of other class engagements and assignments ... The only thing is it is easier in other lectures

to slack off and critical you keep up in this class.” It is interesting to speculate how students

would fare taking a number of PI courses simultaneously.

Attendance. The course structure affected students’ attitudes towards attending

lectures. Comments ranged from a coercive influence: “Clickers made me attend (and pay

attention)”, to a realization of the learning benefits: “It was exponentially more beneficial
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to actually attend class”. Clear changes of practice were noted: “I never ever usually go to

class, ever. At first I was sad that I had to go to class. I usually read the book and follow

along on my own rather than attending class. But after taking this course I realize the

importance of actually attending class. It made a huge difference in how I learned and

remembered the information”. Not all comments were positive on the perceived requirement

to attend: “People should be able to choose whether or not they’re gonna go to lecture

without being penalized”.

Attention. Some students noted that they had to pay attention more in the PI class;

others stated that it was easier to do so. “it forced me to engage with the material while I

was in class” and “it was important to pay attention and be engaged because if you did not

you would miss the point of discussion and clicker questions” exemplify the need to pay

attention. On the other hand, “in this course it was hard not to pay attention”, “[clicker

questions] really helped me keep focus and take a stronger interest in what was being

presented in lecture”, “interacting with others allows our brain to function again and draws

our attention back to the lecture” and “helped me focus and learn the material in class,

instead of losing focus thinking about other things I have going on in my life right now”

exemplify how the course design aids students to concentrate on the material.

Transfer of Behavior to Other Courses

Quite unexpected were reports of how experiences in this course were impacting

behavior in other courses. Realizing the value of repeated review one student noted “clicker

questions constantly forced me to review the material over and over.... if I reviewed a clicker

question I remembered it... I got a perfect score on the midterm. I realized that I should

be doing [this] for other classes.” Another changed his/her approach to lectures, “I am

currently a senior and in my 4 years of college I have probably attended 30% of my lectures.

They never hold my attention, I sit on my laptop all class. I am proud to say that I started

attending all my lectures and actually tried to pay attention.”



www.manaraa.com

65

Research-Ralted or Evidence-Based Practices

Whether or not we, as instructors, find these reported experiences compelling, a

number of student reflections very directly connect with findings or recommendations in

educational research.

For example, in work on reasons students leave STEM in university, Tobias [152]

reports that in STEM classrooms students feel like their contribution is not valued - that they

should merely take in the knowledge of the professors. Our students felt differently: “I felt

like my feedback was encouraged and desired” and “this has been my favorite class here

... for the simple fact that it was an open environment.” In Talking about Leaving [133], a

study of STEM leavers, women who leave STEM are reported to have higher grades than

men who stay - perhaps indicating that women incorrectly understand their relative abilities

compared to their peers. Our students told us the following: “the best part [of clickers]

was seeing the results of the whole class. This kind of gave me an idea as to where the

whole class was and if we were on the same page or not.” Additionally, metrics like the

US’s NSSE (National Survey of Student Engagement) are highly scrutinized because of

research showing improved outcomes for more highly engaged undergraduates. One area

of engagement recognized by NSSE is the positive effect of engaging with the professor

and also having a professor express high expectations for student learning. Our students

experienced both: “because of the frequent clicker questions I feel like am forced to be on

top of my game as these points are vital for my grade” and “students get opportunities to

have discussion with the professor during the lecture.”

In the US National Research Council’s report How People Learn, educators are

implored to employ learning environments that are grounded in the research of how people

learn [15]. In our students’ responses we see reference indicating experiences with the

following:

• Constructivist learning: “Because I was asked to apply myself often, I think it helped
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form stronger connections to the material in lecture.”

• Situated cognition: “Here in this class I was a student of computer programming

while in others they [profs] are there to present us information and we have to spit it

back on pointless exams.”

• Metacognition: “This lecture focused on the learning aspect of programming rather

than the programming itself. In other classes the focus was on the material rather that

the learning of the material. I think this is inappropriate for certain subjects where

the material is challenging.”

Students also reported impacts on their studying. Numerous studies have demon-

strated the importance of spaced learning (versus massed learning, i.e., cramming) for

long-term retention, e.g. [10] and the value of repeated testing compared to repeated

studying for delayed recall [124]. One student specifically recognized this benefit: “I

actually studied less for the midterm, because I has already mastered a lot of the materials

required before I started reviewing contrasting to many other courses where I had to cram

because I did not really understand the materials taught in class.”

One challenge with instructor lecture is that an expert experiences lecture differently,

by virtue of their expertise [73]. Students concurred: “Hearing a different type of expla-

nation from a fellow student who uses terms I may understand better, makes learning new

concept easier” and “It was nice to hear other class members’ opinions about a certain

solution because their way because their way of breaking down an answer was at times

easier to understand than the tutor’s or instructor’s”.

Finally, in our goal to develop critical thinkers rather than merely repeaters of

information, this quote related to the scientific process is pleasing “In this lecture, I felt it

was OK to be wrong and to work through what caused us to think that way.”
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4.6 Discussion

We believe the Chi framework for differentiating student activity as passive, active,

constructive, and interactive is valuable in examining the fidelity of faculty’s adoption

of the PI process in classrooms. As Turpen and Finkelstein report, many faculty who

describe themselves as implementing PI may in fact evidence a significant lack of fidelity

of implementation to PI [154]. For example, faculty who believe they are implementing

PI but are perhaps only encouraging their students in an active or constructive role, not

an interactive role. This is also studied in 11 research-based instructional strategies in

engineering [13]. We believe the Chi framework could be valuable in training faculty in

use of student-centric practices - giving them a clearer distinction in the kinds of activity to

foster in the classroom.

Along similar lines, the extensive range of student valuation comments was pleas-

antly surprising to us. In spite of our years of engagement in our own PI classrooms, and

given our intense scrutiny of them through our other research in the PI process and student

performance and retention, we learned far more than we expected from students’ descrip-

tions of their role. While PI has a notable core of research regarding its impact on learning

gains, the categories of student report make it clear to us how unique the PI classroom

experience is in contrast to students’ daily lecture routine. Most notable to us is how much

more motivated students must be in this class - whether that motivation comes from having

to be prepared each lecture, to looking forward to working with their team and feeling “part

of something”, to actually learning something, to the pleasure at getting effective feedback

on their learning, to simple enjoyment of the experience. Though this data doesn’t provide

an answer to our initial query of whether “other effects” (beyond increased understanding

and feedback) contribute to the successes of PI classes, it helps provide traction to our

feelings that our PI classes seem much more motivated.
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4.6.1 Instructor Experience

A few things not mentioned by students stand out from our instructor experience

that we would like to report in support of future research on the student experience in the

PI classroom. From going around and listening in on student conversations in the group

discussion phase we see the need to explore both the process and the value of having students

put together arguments in more “novice” terms. In particular, we can see that a scaffold

for supporting students in experimenting with the use of new vocabulary to deepen their

understanding might be useful. Additionally, further support and instruction in helping

students have productive discussions, perhaps by leveraging transactive discourse methods,

should be explored [148].

Additionally, we have wondered about the experience of discussions for students

who are not native speakers of the language of instruction. Although in our case, we’ve

noticed some likely benefits (e.g., conversations in Spanish) and can imagine scenarios

where students can use this time to clarify language issues, one could also imagine these

students feeling disadvantaged or isolated in discussions.

Finally, in the PI section a number of undergraduate tutors were used as additional

support in circulating during group discussions. This was partly to support training of

tutors for a future course and partly from experience in much larger instances of this course.

However, we would be interested in seeing in more detail how additional, near-peer tutors

impact the student learning attitude and experience.

4.6.2 Negative Experience

Of particular interest for future ethnographic studies are any negative comments

made by students, including those where a student says they were first unhappy about

something, but later came to see its value. This was the third time the instructor had taught

this course and she had made conscious and significant effort to communicate to students
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the rationale behind the classroom method including discussion of specific components and

their value (especially the discussion). It would be helpful to explore in greater depth (and

over the course of the term, not just at the end) the viewpoints of students about the specific

issues that were, even at one point, viewed negatively. Greater depth of information and

situation of those concerns would be very helpful in developing resources and activities for

faculty using PI to be able to use to help their students “come around” to seeing past their

(possible) initial negative views. We believe a theory of student experience in PI classrooms

would be helpful to faculty wanting to best support their students in learning in this new

environment.

4.6.3 Import for STEM Retention/Education

After repeated readings and analysis, we were quite struck by how our students have

become so resigned to the standard university lecture model. They feel isolated: from each

other, as having no “part” in class, and as being on their own to learn the material. Worst,

they are clearly failing to see the subject matter as something with which they can, and

should, engage: they are sponges, they listen to professors “ramble”, and they try to copy as

much into their notes as possible. We highly recommend the chapter “Introductory Physics:

The Eric Experiment” in [152] and to compare the findings there with what our students

report in their “other classes”. In 20 years, it appears we have failed to make much progress.

On the positive side, our students do want to be engaged (mostly). They are willing to

prepare for class on their own, they are willing to work hard with their peers, and they are

willing to engage as a scientist: to get things wrong and to work to puzzle things out. They

recognize the unusually proscriptive structure of PI, but they also (again, mostly) recognize

how they benefit by having an excuse to not space out, to come to class, and to stay caught

up.

But perhaps the most exciting is students’ recognition and value of themselves as

a community of learners - along with the professor. Both in Tobias’ work and in Talking
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About Leaving, the negative impact of lack of supportive community is clear. Why should

we care about community? There are many arguments, but as a community of scholars,

we understand the value in and the motivation of working with colleagues and having your

work critically analyzed for the purpose of improvement. As educators in the 21st century,

perhaps looking to define our value beyond that of a dispenser of information via video, our

ability to engage students in the process of learning in community is exciting. Certainly, it

makes teaching class much more fun and increases our motivation to teach. And, perhaps,

if students are having more fun, and feel more ability to learn, maybe they are spending

more time trying to learn – maybe they are more motivated to persist. Whether and how this

motivation may affect out-of-class learning and activity is something we believe should be

explored.

4.7 Conclusions

This work evaluates students’ perceptions of their “role” in a PI computing course.

Analysis of students’ self-reported activities demonstrated that the majority of students

report “interactive” activities (arguing, discussing, explaining to peers) in PI classes whereas

the majority report “active” activities (listening, taking notes) in their standard courses. This

substantial shift in classroom activities unsurprisingly causes students to also change their

perception of their role in a classroom. A grounded theory open-coding investigation of

student perceptions finds students positively affected by the shift in terms of class enjoyment,

improved attendance and better attentiveness. They also report on improved meta-cognition

skills facilitated by more frequent feedback and class discussions. Lastly, a few even report

on trying to apply their self-reported improved learning behaviors from PI classes to other

classes. This work has potential implications in identifying common desirable characteristics

in student-centered learning environments and speaks to the issues raised in the STEM

retention literature.
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Chapter 5

Evaluating and Classifying Formative
Peer Instruction Questions and Summa-
tive Exam Questions through the Lens of
Situated Cognition

In Chapter 4 we showed that engaging students in Peer Instruction during lecture

resulted in a more interactive experience, and added enculturation to the learning experience.

Though we saw positive effect of the pedagogy, the first iteration of the summative and

formative questions posed to the students had not been evaluated. In this chapter we

focus on the formative and summative questions we asked the students and show that the

questions themselves require the students to authentically engage with the material. Learning

materials in this course should encourage the students to continue spiraling towards expertise,

engaging them in authentic analysis of computing concepts creates an opportunity for them

to legitimately participate.

5.1 Using Situated Cognition to Evaluate Formative and
Summative Multiple-Choice Questions

Situated cognition is a learning theory in which learning is seen not from the isolated

cognitive, conceptual, or abstract perspective of the individual learner, but rather as situated

72
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within “the activity, context, and culture in which it [learning] is developed and used.” [19]

This viewpoint would seem to resonate with the computing education community. We are a

discipline with a strong professional focus, grounded in the development of a tool (i.e., the

computer) for use in solving problems for the benefit of society. As such, it is implicit in our

curriculum that we seek to apprentice students in becoming (more) masterful computing

professionals. Could instruction be improved by developing more explicit learning goals

generated through the lens of situated cognition?

In this paper we consider the learning materials used in a pilot of the CS Principles

course, under development in the United States. It provides an interesting case because of

two factors:

1. The course sought to provide general education (not preprofessional) computational

thinking skills. As developers of the course, we were vigilant in considering our target

audience. Our mantra “if this is the last computing course a student ever takes, what

do I want them to know” resulted in an emphasis on acculturating students into the

ways computing professionals see, understand, and solve problems - because it is these

ways of thinking that will serve them as they engage with computation throughout

their lives. The ability to write programs was important primarily in service to the

acculturation goal, not as a goal in its own right.

2. The course was highly successful in how it impacted students’ perceptions of future

computing use. In [44] we report on the ways students said they could solve problems

better, transfer what they had learned to new situations, and more generally, how their

confidence had increased and that they could now see technology in a new way.

Because of these factors, we have performed an analysis of the course learning

materials to provide an explication of what it was that students were engaged in doing that

might have contributed to these results. Using situated cognition theory in this analysis

is appropriate because the course design centered on Peer Instruction - a pedagogy that



www.manaraa.com

74

supports cognitive apprenticeship in the classroom. The 133 clicker questions we analyzed

were developed by the instructor through daily consideration of the programming concepts

and constructs presented in the text-book in light of the following questions: “How can I

get students to see this concept/construct the way I see it? To understand why I use it the

way I do to analyze, solve, or debug problems?” Because clicker questions are presented as

multiple-choice questions (MCQs), this required focusing on one small aspect of computing

thinking at a time.

The Abstraction Transition Taxonomy resulting from our analysis forms a descrip-

tion framed by situated cognition: the amalgamation of activities, tools, and culture that

the instructor felt would acculturate the students into the world of computing. We express

our analysis in terms of a taxonomy because of the nature of the analyzed materials - a

number of taxonomies exist to classify assessment questions. Taxonomies are useful because

they afford communities a shared vocabulary for discussing learning. We propose that the

categories of clicker questions define both a more explicit and more extensive set of learning

goals, a set that we should adopt for introductory programming classes. Nonetheless, we find,

through analysis of summative assessment items from 7 different introductory programming

courses, that a much-restricted set of these learning goals are measured by final exams -

including our own.

5.2 Motivation

5.2.1 Expertise Development

The goal of any introductory-sequence programming course is not simply to create

students who can generate working programs. Rather, more holistically, we want students to

begin to see problems as programmers do and learn to apply programming concepts and

constructs in the “right way” to solve computational problems. Perhaps because we are

aware of our responsibility to produce computing professionals, compared to disciplines
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such as biology or math, our curriculum embraces the intertwining of theory and application

and we start students immediately down the path of 10,000 hours of deliberate practice

required to develop expertise [53]. That is, we start them solving problems by writing

computer programs as they learn the vocabulary/language and concepts underpinning the

discipline. We posit that our typical educational practices could be better informed by the

literature on expertise development.

Let us consider a long-utilized method for developing expertise - the master- appren-

tice model. Consider an analogy: the apprenticeship of tailors.1 Apprentice tailors work

closely with their masters in two important ways we want to contrast to common models of

programmer education:

1. Scaffolding. Tailors are scaffolded in the development and practice of their skills by

the master - starting with tasks like ironing which engage them in legitimate peripheral

participation (the opportunity to observe and acculturate while making a contribution)

[27]. They are also set smaller, simpler tasks - they are not assigned to make an entire

suit, they might be given various piecework a bit at a time; the button holes, cloth

selection and preparation, fitting, etc.

2. Process. Tailors are not judged merely on the final outcome or garment. The master

works in close proximity to the apprentice with the responsibility to observe critical

professional skills: processes, analysis and decision-making, and intermediate results.

We propose that there is a lesson for us to learn from the master tailor. Computing

instructors focus far too much on the final product - the small program/the simple garment.

We do not provide enough direction in the preparatory steps - moreover, while we may

“teach” students about various steps, we don’t provide enough guidance on the specific

masterful ways we approach the steps, the ways in which we evaluate our activities in the

steps, and the considerations we take in deciding upon steps. We require our students to
1An example inspired by the work of Jean Lave, but expanded and interpreted by the authors.
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experience these for themselves through their experiences doing programming problems.

We really only look at their finished products - we don’t go through the process with them

and observe whether they are thinking and deciding as we would like - not just “doing” as

we do.

5.2.2 Defining Learning Outcomes through Situated Cognition
Theory

Situated cognition theory embraces the notion of learning and knowing as inseparable

from the way in which that knowledge will be applied in real life. This stands in contrast

to the individualistic view of learning, where learners can be taught conceptual knowledge

abstracted from the situation in which it is learned and used [19]. Instead, situated cognition

theory states that knowledge is situated in a triad of activity, tools, and culture: that it’s not

just what steps to take using what resources; a critical aspect comes from the context and

culture in which that knowledge is to be exercised.

In the language of situated cognition theory, in computing education we engage

students in activities using computing tools. What is missing is the cultural portion - the

fact that our students are not doing real piecework that will contribute to a real suit for a

real customer and, most importantly, under the auspices and detailed guidance of a master.

To support development of expertise we need to consider all three components - activities,

tools, and culture.

Table 5.1 proposes some programming-specific interpretations of activity, tools,

and culture. Culture is critically interdependent in this creation; it determines how and

why practitioners choose the tools they do, what activities they engage in and how they

know to make those choices. As stated in [19], “[t]he activities of many communities are

unfathomable, unless they are viewed from within the culture.” Perhaps this sheds light

on bizarre programming behaviors, completely unexpected questions, and often intense

frustration expressed by so many of our students.
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Table 5.1. The core components of situated cognition, using programming as an example.

Activity Running a program, observing program behavior or output,
inspecting code, making edits, compiling, hypothesizing

Tools Programming constructs, programming concepts, IDEs

Culture Knowing to match up runtime behavior with static codebase,
knowing what variables to trace, knowing the right way to
decompose a problem, knowing to look at a problem in light
of what constructs are available to solve it.

To shed light on the difference between activity and culture as defined in Table 5.1,

consider the difference between novice and expert debugging. Instructors joke about stories

of novices using the following activities: run program, observe output, note that it’s not what

was expected, make an edit at random, recompile, run again, and so on. This is a novice

culture. The expert would: run the program, observe the output and note that it wasn’t

what was expected, examine the code and the problem statement or maybe add diagnostic

print statements in order to develop a hypothesis as to the problem, run the program with

particular test data to check the hypothesis, and so on. The individual activities are simple

and should be relatively easy to enact. It is the choice of activities and the way the activities

are combined that defines the difference between novice and expert, and hence the cultural

aspect.

One of the primary manners of supporting learning within the lens of situated

cognition is through the development and support of communities of practice [158]. A

community of practice is made up of experts or practitioners who share a profession. Member

development (from novice to more expert) is embedded within all of the shared information

and activities of the community. Members’ expertise is developed through interactions with

others in the community, while working on real problems of community interest, expressed

using the community’s own vocabulary..

Communities of practice have inherent conflicts with traditional modes of academic



www.manaraa.com

78

instruction. Most critically, the members of the community (the students) are novices (or

relative novices in the course in question). The expert is the lone instructor (who may or may

not be involved in a professional community of practice in the subject area). Additionally,

the customs of individual assessment often lie in conflict with authentic practice processes

and problems.

Cognitive apprenticeship is a method developed by [27] seeking to “try to enculturate

students into authentic practices through activity and social interaction in a way similar to

that evident - and evidently successful - in craft apprenticeship” [19]. In this course, we

employed Peer Instruction to support cognitive apprenticeship [105]. We deliberately and

consciously developed clicker questions not with the goal of asking students to program,

but asking them to perform various tasks and consider various analyses that the instructor

felt would help them see how the computing community sees such things.

In this paper we discover how incorporating the consideration of culture helped

generate a more specific and larger set of desired abilities and knowledge than are tradition-

ally discussed in literature of desired competencies of introductory programming students

(see related work). Since these competencies have mostly been studied within the realm

of summative assessment (exam) classification and evaluation of student performance, this

is not too surprising. However, we believe the community will benefit from consideration

of this new approach and from comparison of these competencies with those previous

discussed.

5.3 Related Work

Learning Taxonomies. Learning taxonomies are important for computing education

because they give the community a vocabulary to use when discussing student understanding

and learning - and curriculum supporting it. Taxonomies should support educators in having

conversations and in reporting on their courses and efforts to improve what goes on in them.
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Bloom’s Taxonomy is a highly popular taxonomy. It consists of 6 levels to describe students’

cognitive development. In 2001 Anderson produced a revision of Bloom’s Taxonomy

consisting of 24 categories within two dimensions. The Knowledge Dimension consists of

Factual, Conceptual, Procedural and Metacognitive knowledge and the Cognitive Process

Dimension consists of Remember, Understand, Apply, Analyze, Evaluate and Create. A

more detailed description of each category can be found in [1] (pp 29-31).

The Revised Bloom’s Taxonomy’s value has been called into question in computer

science [79] and has been modified to include “higher application” in order to make it

relevant to the field [62]. Other taxonomies, such as SOLO [9] assess cognitive level

through student response-type. Our work differs from these in that we move our focus beyond

assessment of students’ cognitive skill development to consideration of their development

in the situated goal of coming to think like and perform the actions of a programmer.

Most recently, work by Lister, et. al, has moved to consider desired programming skill

development through Piagetian constructivist learning theory [36].

Apprenticeship and Deliberate Practice. Our clicker questions sought to support

students during the apprenticeship phase of learning. Similarly, Faulkner created a more au-

thentic experience for novices through Worked Examples: “These are designed to encompass

the spectrum of the problem solving process:

• observing the application of programming concepts

• observing authentic problem solving

• cooperative problem solving” [58]

Furthermore, Faulkner asserts that the instructor must display the problem solving

in the same environment that the students will be working. [58]

Bareiss takes an approach similar to Worked Examples where students are engaged

in cognitive apprenticeship learning techniques through coaching. [3] More specifically,
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Bareiss defines five techniques needed to coach students: Modeling, Scaffolding and Fading,

Articulation, Reflection and Exploration. Scaffolding and Fading is similar to Worked

Examples in that it focuses on Task Design, Direct Guidance and Feedback.

Worked Examples and coaching are two ways to encourage deliberate practice [53]

in novice programmers. As described by Ericsson:

The theoretical framework of deliberate practice asserts that improvement in
performance of aspiring experts does not happen automatically or casually
as a function of further experience... The principal challenge to attaining
expert level performance is to induce stable specific changes that allow the
performance to be incrementally improved. [53]

Deliberate practice involves practicing with the goal of making small improvements at each

step, and more importantly, getting feedback along the way to improve the practice when

improvement attempts are unsuccessful.

Acculturation. There have been efforts to acculturate students in programming using

professional-world approaches. Pair programming [106] is a technique where one student

(the driver) works on the lower level parts of programming (e.g., coding) and the other

student (the navigator) works at the higher-level (e.g., design and integration). The students

switch over being driver and navigator throughout the assignment. Pair programming

has been effectively used in the classroom [16] and is an effective way to encourage

students to engage in confident practice while learning and consequently doing better in

their programming. [17]

Coding Dojos [64] harken back to something like the masterapprentice model to

support acculturation. Seemingly not formally studied, Coding Dojos are places where

programmers can go and watch others program or be watched programming. The idea is

if novices are watching experts they can see the choices experts make and if experts are

watching novices they can guide them. Compared to pair programming this emphasizes the

community and culture aspects of situated cognition.
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5.4 Creating the AT Taxonomy

5.4.1 Methodology

The Transition Levels

We developed the Abstraction Transition (AT) Taxonomy through analysis of learn-

ing materials from a CS0-type course teaching Alice serving approximately 570 students as

a general education course at a large research-intensive institution in the US. The learning

materials we analyzed were multiple-choice clicker questions (MCQs) posed during lecture

for students to answer and analyze in groups (via the Peer Instruction pedagogy [105]).

These formative assessment questions sought to support learning through cognitive appren-

ticeship. However, most exam questions for this course were modeled very closely on these

MCQs.

All but one author (Foster) was involved in the teaching and delivery of the course -

creating questions and interacting with students discussing them during lecture. After the

end of the term, Fecho reviewed the in-class clicker questions and generated categories

stemming from her instructional experience with those questions. She identified three levels

of abstraction in the questions: English, CS Speak, and Code.

The primary instructional team (Simon and Cutts) did not consciously consider

“levels of abstraction” in clicker question development but, in retrospect, this focus was not

surprising. On the second day of class, the instructor used Figure 5.1 as an overview to

students of what they would be asked to do in the course.

In our analysis we refined Scenario to English, Design to CS Speak and Imple-

mentation to Code. We use English instead of specification to indicate that no specialized

language is used describing the intended behavior. In Alice, an example of English would

be “make a skater spin around 3 times”. In CS Speak this might be “have the iceSkater turn

3 revolutions”. Figure 5.2 shows what this would be in code.

In Alice, for the simplest cases, English and CS Speak can be quite similar, and are
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Figure 5.1. Slide presented in second lecture revealing (in hindsight) instructional focus.

Figure 5.2. In CS Speak, this might be “have the iceSkater turn 3 revolutions.”
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Figure 5.3. Example MCQ: Transition from CS Speak to Code.

differentiated by the specific methods and objects defined in Alice.

Through continued discussion we developed a taxonomy that describes those activi-

ties and tools, and ways of thinking about using those activities and tools, that the instructor

felt students need to engage with in order to understand how computing and computing

professionals work. A clear finding involved our emphasis on developing students’ skills in

transitioning between levels of abstraction. This was especially evident because of our use

of MCQs - with their “stem” and “option” components. Figure 5.3 represents a transition

from the CS Speak abstraction level to the Code abstraction level.

To better clarify the difference between English and CS Speak, we also provide a

question transitioning from English to CS Speak. This question is asked in English and the

answer choices require the students to use their understanding of CS Speak:

Suppose there are customers waiting in line at the store. You want to serve
each customer one at a time, so each one should walk to the counter one at a
time. How could you do this? A. Use a DoTogether tile, B. Use a DoInOrder
tile, C. Use a ForAllTogether tile, or D. Use a ForAllInOrder tile.

After categorizing a few sample questions, we began to acknowledge that some



www.manaraa.com

84

question and answer sets remained within one level of abstraction, mainly CS Speak or

Code. However, these non-transition questions still lie explicitly within an abstraction level

and bring out interesting issues from the point of view of cognitive apprenticeship. CS

Speak was especially interesting - as it represents the “lingo” of expert programmers. We

found we asked two types of tasks with these questions. We term them: CS Speak Apply

and CS Speak Define. That is to say, a CS Speak Apply question would engage students

in identifying what CS Constructs/Concepts were involved in an algorithm or in deciding

which/how CS Constructs/Concepts might solve a goal described by a CS Speak description.

For example, CS Speak Apply would be:

If we write a method called drive, which would not makes sense as a parame-
ter to control how drive occurs? A. Destination, B. How Fast, C. Which car,
or D. Car color

A CS Speak Define question, on the other hand, would engage a student in explicitly

reflecting on what CS Construct/Concept does or what it is used for in the programming

community. For example, a CS Speak Define question would be:

Which of the following is the best explanation of what makes a good param-
eter? A. It’s something that supports common variation in how the method
is done, B. It’s got a meaningful name, C. It can be either an Object or a
number, or D. It helps manage complexity in large programs

Questions that remained in the Code abstraction level were codetracing questions.

Although this may not be a transition through abstraction levels, it represents a skill all

experts have and sometimes employ in that it requires tracing of code without any analysis

or deeper understanding past that of the logic required to solve the problem. For example, a

question in this transition would be:

Furthermore, we agreed that due to the nature of Alice, there might be questions that

were unrelated to computing concepts and solely related to Alice-specific issues. These, we

gave a classification of “other” and did not expect these types of questions to appear in other

programming languages. We do not report on these here.
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Figure 5.4. How far up will the bee move in the second instruction, given that the tulip is
0.3 meters high and our fly is 0.1 meters tall? A. 0.2 meters, B. 0.3 meters, C. 0.35 meters,
D. It’s not possible to tell, or E. I don’t know

Different Types of Questions

While performing this analysis we noted an orthogonal question classification de-

scriptor: rationale questions and mechanism or definition questions. We summarized these

as why questions and how questions (respectively) and they are defined in Table 4. How

questions are a norm in computing education. The why questions are a natural outgrowth of

making explicit the need to rationalize, culturally, decisions of activity and tool use in pro-

gramming problems. That is, rather than just hoping students internalize how programmers

think, we use why questions to explicitly engage students in discussion and evaluation of

various programmer rationales.

An example of a why question, with AT level 32, shows two code snippets that have

the same outcome and then asks: What is the BEST explanation of why one is better than

the other? A. Option 1 is better because it is shorter, B. Option 1 is better because it does the

least number of “checks” (or Boolean condition evaluations), C. Option 2 is better because it

makes clear exactly what the “checks” (or Boolean condition evaluations) are, or D. Option

2 is better because it has a regular structure with empty “else” portions

On the other hand, Figure 5.5 is an example of a how question, with AT level 13

asking the student to choose code that would match the description.

To improve the clarity and support reproducibility of AT Taxonomy categorizations,

we selected a random sample of 20% (27/133) of all the MCQs asked over the term and had

two authors categorize and discuss them based on our taxonomy. From that the two authors

iteratively refined the taxonomy. Once finalized, those two authors individually categorized
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Figure 5.5. Example question showing a how-type question.

a second random 20% (28/133) of the MCQs for both transition number and type. The

authors reached an 87% inter-rater reliability (counting matches for agreement on transition

number and agreement on type). Finally, one of the authors coded the remaining 60% of the

MCQs from the CS0 course.

5.4.2 Results

The transition levels used to categorize questions are defined in Table 5.4. The types

(why and how) used to further categorize questions are defined in Table 5.5. Together,

Tables 5.4 and 5.5 define the Abstraction Transition Taxonomy. Table 5.3 below shows the

final results of applying the classification scheme to our in-class Peer Instruction MCQs.

Due to lack of space, we don’t show the breakdown of how and why questions in each

category, but overall 21% of questions were why and the rest were how.

To read the chart, look in the row for the level of the question stem, and then move

to the column that indicates the option level. This shows that 9% of the questions asked

in lecture through MCQs had a question stem in English and the answers were in Code,
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Table 5.2. CSE in-class MCQ Distribution. Overall 21% were why questions.

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 6% 9%

CS Speak: 2 2% 8%(A) / 28%(D) 6%

Code: 3 12% 15% 9%

making 9% of the questions an AT level 13. Similarly, 12% of questions were AT level 31,

6% were 23 and 15% 32.

5.5 Applying the AT Taxonomy

5.5.1 Methodology

Returning to our original goal, we used the AT Taxonomy to help both overview and

tease out the manners in which this course sought to help students develop computational

thinking practices - or to reach a basic level of understanding of the programming community.

We noticed that our CS0 course was fairly distributed amongst all the transitions, with

perhaps a surprising focus on use (2A) and understanding (2D) of CS Speak.

With this enlightened view of the course, we explored how our summative assessment

(final exam) differed from or matched our formative assessment (in-class MCQs). We were

also interested to explore other introductory CS courses’ (CS0, CS1 and CS2) summative

exams to see a) if our taxonomy would be applicable to others’ assessments and b) if our

course differed from theirs (as measured by summative assessment).

We analyzed 7 exam sets taken from 4 sources: recent assessment literature, a

standardized exam from the Advanced Placement series in the US, a complete exam with 8

questions from a large mid-west US Institution found on the web, and our own CS0 exam.

Of note, the CS2-DCER data represents 3 complete exams from the year 2009 (the most

recent available) accessed through the DCER project [127]. Table 5.3 summarizes the

datasets.



www.manaraa.com

88

Table 5.3. CSE in-class MCQ Distribution. Overall 21% were why questions.

Dataset Name Language Number of
Quesitons

Complete or
partial set

CS0 - Our Exam Alice 37 Complete

CS0 - Meerbaum-
Salant

Scratch 5 Partial

CS1 - Lister Java 12 Partial

CS1 - Lopez Java 24 Complete

CS1 - APCS Java 22 Partial

CS1 - R1 Java 8 Complete

CS1 - DCER Java 143 Complete

5.5.2 Results

Transition Deistribution

As noted in Section 5.5.1, the in-class clicker questions from our CS0 course

are fairly distributed across the taxonomy categories. How were these skills reflected in

summative assessments? Tables 5.6 through 5.12 show the AT Taxonomy applied to the

exams.

CS0. It is thought provoking that our exam question distribution was not reflective

of the kinds of questions asked in class. Rather, the exam is almost “all about code” - all but

four (related) questions involve an AT level 3. This suggests that even if an educator is fully

aware of the need for more diverse cognitive apprenticeship in programming culture and

tasks, the norms of examinations may send a very different message to students about what

is important.

Of the set of assessment questions reported in Meerbaum-Salant’s Scratch paper

[107] 60% of them fall in the 23 or 3 AT level. The course is therefore assessing the students’

coding ability - can students write or trace code, possibly given a storyboard or pseudocode

description. The focus of the course is to introduce computing concepts, but it is clear that
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Table 5.4. Definition of Transition Levels. The numerical coding in the leftmost column
represents the particular transition where 1 is English, 2 is CS Speak and 3 is Code. AT
levels that do not follow this scheme are: CS Speak Apply (2), CS Speak Define (2D), and
Code (3).

Transition Level Description

12 English-CS Speak: Given an English description of a scenario
or goal, choose a technical description in “CS Speak” of the
process to achieve the goal in the form of an algorithm or
storyboard.

23 CS Speak-Code: Given a technical description (CS Speak) of
how to achieve a goal, choose code that will accomplish that
goal.

13 English-Code: Given an English description of scenario or
goal, choose the code that will accomplish that goal.

32 Code-CS Speak: Given code, choose either a description in
CS Speak of the goal of the code, or choose which coding
constructs are used within the code.

21 CS Speak-English: Given a description in CS Speak or coding
construct, choose an English description that describes what the
CS Speak does or the goal that it accomplishes.

31 Code-English: Given some code, choose an English descrip-
tion that describes the goal of the code, not the step-by-step
process, but the overall goal.

3 (Apply) Code: Given code and conditions, choose a result from execut-
ing the code. This is “code tracing” and does not imply overall
goal, but simply the execution of the code.

2 (Apply) CS Speak: Given a CS Speak description, choose the coding
constructs that are present (or vice versa).

2D Define CS Speak: Provided coding constructs choose a technical de-
scription of their purpose or how they work.
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Table 5.5. Definition of Types.

Type Description

Why Choose a rationale for why a statement of answer choice is
correct or incorrect

How Choose an unambiguious answer that depends on mechanism
or definition.

Table 5.6. CS0 Final Exam

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 0% 27%

CS Speak: 2 0% 11%(A) / 0%(D) 11%

Code: 3 8% 27% 16%

Table 5.7. Meerbaum-Salant

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 0% 0%

CS Speak: 2 0% 0%(A) / 20%(D) 40%

Code: 3 20% 0% 20%

Table 5.8. Lister

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 0% 0%

CS Speak: 2 0% 0%(A) / 0%(D) 42%

Code: 3 0% 0% 58%

Table 5.9. Lopez

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 0% 13%

CS Speak: 2 4% 8%(A) / 8%(D) 8%

Code: 3 13% 17% 29%
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Table 5.10. AP CS A

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 5% 9%

CS Speak: 2 0% 0%(A) / 0%(D) 14%

Code: 3 0% 23% 50%

Table 5.11. Midwest R1 Institution

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 0% 13%

CS Speak: 2 0% 25%(A) / 0%(D) 50%

Code: 3 0% 0% 13%

the assessments are also focused on code.

CS1. Both the Lister [93] and Lopez [94] datasets reflect efforts to study student

abilities on commonly desired programming skills across institutions and countries. Lopez

was a part of the BRACElet [159] project where assessment of Lister’s questions led to the

development of Explain in Plain English (EiPE) questions. The Lopez dataset is the only set

that reports assessment of a range of AT levels. This is likely because he sought to explore a

new type of question within the framework of existing exam questions. Lopez’s identified

types of questions are: EiPE (AT31), Code Writing (AT13), Tracing 1 (AT3) and Tracing 2

(AT3).

Both the APCSA sample and the R1 exam show strong emphasis on level 3 activities.

Table 5.12. DCER

Q/A English: 1 CS Speak: 2 Code: 3

English: 1 — 2% 0%

CS Speak: 2 0% 46%(A) / 29%(D) 3%

Code: 3 0% 5% 14%
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50% of the sample questions for the APCSA exam are AT 3 level requiring code tracing

with no abstraction transition and no engagement with contextualization of the problem.

In the R1 exam, we also see the emphasis on transitions focusing on the code - 75% of

questions fall into AT 13, 23, or 3.

CS2. Quite strikingly, different skills seem to be valued in CS2 exams. These exams

represent 3 complete exams from the DCER international dataset. Nonetheless, we find a

switch in emphasis from code (and transitions to/from it) to CS Speak; asking students to

apply appropriate computing concepts or indicate understanding of the purpose of use of

those concepts.

Type Distribution

Of the questions asked on our CS0 final exam, 11% of them were why questions

(89% were how questions). Of these why questions, 75% of them were 32 and 25% of them

were 23, meaning some kind of CS Speak was involved. Of the remaining sets, there are

only three exams that have any why questions; CS1-Lopez, CS1- R1 and CS2-DCER. The

distribution of why questions across these exams also never exceeds 15%. The remaining sets,

CS0- Meerbaum-Salant, CS1-Lister and CS1-APCSA, have no why questions whatsoever.

Although why questions might be considered challenging or subjective to grade, we hope

instructors will consider the value of asking students to be able to explain their rationales

and therefore situate their abilities and use of tools in the programming culture.

5.6 Discussion

5.6.1 Culturally-Informed Learning Outcomes: Why Questions are
Critical

Reflecting on the AT Taxonomy in light of situated cognition theory - the amalgama-

tion of activities, tools and culture that define the programming community - we are struck

by the relative scarcity of why questions among both our clicker and exam questions. Surely
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the integration of culture with activity and tools means that “just” being able to apply a tool

or perform and activity is not sufficient. We wouldn’t claim one was a vetted member of our

community who couldn’t explain why – for any question in any of our 9 AT categories.

But every clicker question is a why question - regardless of whether the question’s

stem or options make that why explicit. It’s inherent in the Peer Instruction pedagogy that

questions are developed based on the kinds of discussions one wants the students to have

(through the vote, discuss in small groups, revote procedure). Quite specifically, in Peer

Instruction, the instructor frequently exhorts students to discuss not only why the right

answers are right, but also why the wrong answers are wrong. Students aren’t just “doing”

an AT transition, but they are rationalizing their thought process and describing what they

did and thought. In their groups, the class-wide discussion where they hear the explanations

of other groups, and the instructor wrap-up, they are apprenticed in how programmers think

about problems and rationalize actions.

We claim this means that we have identified 18 learning goals for development of

programming students: All 9 categories have both how and why goals. So for example, by

the end of the course students should be able to:

• In the context of a computational problem, read an English description and write code

to solve the problem (13 how)

• In the context of a computational problem, read an English description and write code

and describe why that code solves the problem in the English description. (13 why)

The truth is, as much as we do care about 13 how, in the absence of demonstrated 13

why ability, we cannot claim a student has, from a situated cognition perspective, become

proficient as a practitioner in the community. Similarly though rarely a featured part of

instruction, we need goals that students should be able to:

• Read code and give an English description of what it does (31 how)
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• Read code and explain why their English description of what it does is correct (and

possibly why another is not) (31 why)

These goals contribute to defining the community practitioner’s ability to read the

code of others, perhaps for code maintenance, modification, or debugging.

5.6.2 Can Summative Assessments Measure Computational Think-
ing?

We began this work with the goal of summarizing and elucidating our in-class

learning materials. We hoped this would help us understand how a CS0 course which, at

surface level, is focused on programming was achieving the positive changes in student

confidence and abilities previous reported [44]. This paper has shown that a new view on

how we want to think about, teach, and assess introductory programming courses can be

found by stepping back and focusing on cognitive apprenticeship of computational thinking

skills.

Interestingly, most of our identified 18 learning outcomes are not assessed on

summative assessments - based on a sample selected primarily from recent research literature.

Notably, why questions represent less that 15% of any exam - with three of the exams

evidencing no why questions at all. Does this bother us as a community? We hope this work

spurs discussion of that question.

Through our recent experiences in supporting high school teachers in the CS Prin-

ciples project, the need to assess why ability has sharpened. We are beginning to explore

multiple-choice questions (of the how variety) and asking students to explain in written

English form how they analyzed it and why the wrong answers were wrong. These responses

are more challenging to grade, but seem to be both more valuable and easier to create than

multiple-choice why questions where the options are various explanations or rationalizations.

In future work, we hope to further explore the potential and validity of these questions.
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5.7 Conclusion

We propose that situated cognition theory, with its focus on learning for application

in the “real world” and its focus on developing expertise within the context of a community

is a useful lens for reconsidering programming instruction and perhaps computer science

instruction more generally. A number of factors support this idea. First, our community

has norms that seem particularly challenging for outsiders to understand. The common

stereotype of a computer programmer makes it clear that we are to be considered other and

our actions incomprehensible. It may be that part of our collective recruitment and retention

issues (at least in the US) stems from the lack of attention to acculturation of new members.

The AT Taxonomy defines 18 learning outcomes that explicitly address the required culture,

activity, and tools required for members of the programming community which we believe

needs to extend, at least minimally, to embrace everyone in modern, digital society.
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Chapter 6

Using Exploratory Homeworks to Cre-
ate an Active Learning Tool for Text-
book Reading

Chapters 4 and 5 focus on the enculturation of students during lecture, however

students are also spending many hours and hundreds of dollars engaging with textbooks

outside of lecture. In this chapter we introduce Exploratory Homeworks which is an iteration

of textbook design to engage students in a more active reading experience. Specifically, this

is critical for a Peer Instruction course, since it requires students to complete pre-lecture

reading to be prepared to discuss during lecture.

6.1 Activating Constructionist Learning in Pre-Lecture
Reading

Active learning is known to be a best practice in classroom pedagogy. Research

shows that people don’t learn very effectively from being “told” what to do. They gain

a much deeper and meaningful understanding by constructing their own learning through

engaging with a concrete problem [14]. Various classroom techniques such as Peer Instruc-

tion, POGIL (Process Oriented, Guided Inquiry Learning), PLTL (Peer Led Team Learning),

studio-based instruction and lab-centric instruction replace or significantly augment lecture

in order to accomplish this [105, 51, 77]. However, the classroom is only one learning
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resource common to undergraduate education.

The next most obvious resource (at least to students, since they pay for it) is the

textbook. Textbooks are generally expository in nature and textbook reading by students is

often very passive. A report from a genetics course finds students’ attitudes and descriptions

of how they read textbooks to be quite novice - very much out of line with how faculty

would want them to read it [12].

Teaching a programming language has a unique aspect that we seek to take advantage

of - one can interact with the computer to get feedback on behavior of programming

constructs. In fact, anecdotally, we posit that experts rarely learn a new programming

language by sitting with a static, passive, textual or expository resource. Instead they

combine explanatory sources with guided or self-defined micro-experimentation - isolating a

specific construct or concept of interest and developing the simplest possible code to enable

them to explore its behavior.

In this discussion paper we introduce a new “active learning” tool for supporting

students in successful, and more expert-like, engagement with a traditionally passive resource

- the textbook. Exploratory homeworks are written guides that engage students in their first

exposure to and experimentation with a programming construct. In our experience, they

augment the textbook by outlining small learning goals (at the subsection level or smaller),

and provide specific guidance on how to use the book.

First, students are asked to both open the textbook and launch their programming

language development environment. They are then asked to “follow along” building up

an example code, and are stopped frequently and confronted with questions to pose to

themselves, experiments in modifying the code, and explanations of what they should have

just experienced. Afterwards students are provided with example questions that indicate the

level of understanding they should have achieved by doing the homework.

In our context (and what we recommend), this homework is done individually by
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students before each lecture period, covering introductory material for that lecture. Students

are encouraged to do the homework, which is not itself graded, by a 3-4 question quiz

for credit given at the beginning of every lecture. This both supports and flows naturally

into a lecture that also utilizes an active learning-based pedagogy. In such lectures, since

students are involved in constructing their own understanding, not just listening, there is

usually less time for standard expository lecture. Exploratory homeworks provide students

the opportunity to become familiar with basic material before class, allowing the instructor

to spend their valuable time with students working with more advanced, nuanced, and/or

in-depth applications and explanations of the material.

Next we provide background and related work for the theoretical underpinnings

supporting the efficacy of exploratory homeworks. In Section 6.3 we describe the setting

of the course and in Section 6.4 we outline the flowchart guiding design of exploratory

homework and provide an example from a section on looping. In Section 6.5 we provide

qualitative and quantitative data on students’ experiences with and perceptions of the value

of the homeworks. In Section 6.6 we discuss our experiences and provide recommendations

for instructors seeking to develop exploratory homeworks in their programming courses.

6.2 Related Work

Lecture. Various forms of active learning are much studied both in STEM higher

education and in computing education. Labcentric instruction replaces all or most of lecture

with extensive guided lab work, featuring frequent opportunities for feedback - something

designed to help improve students’ self-assessment skills [91]. Peer Instruction, POGIL,

PLTL, and studio-based instruction all fall into the realm of collaborative pedagogies, and

are designed for lecture or discussion section-type settings [105, 51, 77]. Modifying the

lecture period to be more engaging and collaborative is an important pedagogical change to

help students learn, but the lecture period is typically only a couple hours a week. Students
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spend the majority of their time outside of lecture, where they often do not have access to an

expert (the lecturer) to clarify or ask questions.

Closed-Labs. Frequently computer science lectures are accompanied with a lab-

section. This provides students with an additional few hours a week where they have access

to an expert to help guide them or explain complex concepts. Lab manuals and tutorials

[157] offer students guidance when in closed-lab settings, though they are still distinct from

exploratory homeworks in that 1) The environment in which they are used is a completely

guided, “safe” environment and 2) The goal of a lab manual or tutorial is typically to

help the students understand a concept and actually write a program. Though exploratory

homeworks guide students through complex concepts and writing programs, they are also

focused around teaching students how to read a computer science textbook or text resource.

Lab manuals or tutorials are separate from traditional textbooks or online resources in that

they are completely contained. Exploratory homeworks ask students to go outside of the

homework to seek information in order to progress (which is what is typically done when

experts are learning a new language or concept).

Worked Examples. Casperson also realized that the textbook is a relatively mal-used

resource in computer science education. He understood “A static program example presented

in a textbook reveals nothing about the process of developing the program.” [7] Casperson

therefore developed Worked Examples in computing; problems that actively engage the

students in a step-by-step process of learning the concept while attempting to minimize

cognitive load. This was significant (though perhaps still in need of development) because it

encouraged educators to engage their students in process rather than just results. Exploratory

homeworks also focus the student on process. However, we specifically focus on directing

students in understanding more “standard” static computing instructional text and translating

it into problem solving and programs.

Our Work. Exploratory homeworks are uniquely designed to enhance at-home
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textbook reading. This setting is very different from both lecture and closed-lab. Typically

reading is a sedentary action students engage in because “they are required to”. Though

almost every university has some form of student academic support unit that recommends

various approaches for effective textbook reading, they are typically not discipline specific

[80]. And we believe many of these suggestions do not encourage computing students

to engage in thinking through problems and following or analyzing code. Kolb [85]

describes a learning process (the Kolb Learning Cycle) that involves combinations of

perceiving and processing information. The Kolb Learning Cycle involves four learning

styles: concrete experience, reflective observation, abstract conceptualization and active

experimentation. Typically, educators apply the Kolb Learning Cycle to a lecture or lab

component. Exploratory homeworks seek to bring Kolb-like styles to the less-structured

reading experience.

Finally, the efficacy of exploratory homework can be argued from another aspect of

social constructivist theory - authentic practice. In [19] they argue that all too often “school-

based” instruction ignores the situated nature of knowledge and suggest that development of

expertise be guided through cognitive apprenticeship. That is, we must engage students not

just in abstracted conceptual knowledge, but also in the authentic practices that experts in the

practice use. We must engage students in “doing as we do” and support them in developing

the ability to “think as we think”.

6.3 Setting

6.3.1 The Course

Exploratory homeworks were introduced in a CS0 course that was taught using

the active learning pedagogy Peer Instruction (PI) [105]. The course taught 440 mostly

non-major, undergraduate students at a large R1 institution in the western USA. Students

learned the Alice programming language and Excel. The course was designed to help
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students develop a general understanding of computing concepts and constructs.

6.3.2 Incorporation of Exploratory Homeworks

Exploratory homeworks were incorporated into the course to enhance pre-lecture

reading. The course structure was as follows:

• Students were assigned pre-lecture exploratory homeworks.

• At the beginning of the 90-minute lecture, a quiz was given to assess what students

should have learned from the homeworks. A subset of the quiz questions came from

questions provided in the homework.

• Lecture then continued in a typical PI fashion. Furthermore, the instructor could delve

deeper into a problem by extending examples from the homework.

• The exploratory homework, quiz and lecture cycle took place twice per week.

• The week following both lectures, students were required to demonstrate understand-

ing through a directed, closed lab involving code writing.

• Midterm and final exams also included questions of the style introduced in the

exploratory homeworks.

Students were able to spend as much or as little time as they wanted or could

manage on the exploratory homeworks. The homeworks were not graded, but every lecture

students were directly rewarded for completing the homeworks via a quiz. Additionally, the

homeworks served to help students engage in the kind of analysis processes they would be

called to perform during peer discussions during lecture.
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Figure 6.1. Exploratory Homework Structure

6.4 Example Homeworks

The course used the book “Learning to Program with Alice” [46]. This book

is written in a fashion that easily supports active learning. Each chapter is divided into

sections that ask the student to create (or use an existing) Alice program and then enhance

or modify it based on instruction and guidance from the book. The exploratory homeworks

were developed to focus on the led examples in the book, enhancing them with details and

encouraging the students to further explore the code, make predictions and “play around”.

Homeworks were typically broken up into 3-4 sections. Figure 6.1 shows the structure of

the exploratory homeworks.

The purpose of this structure is to actively engage students in learning the basics of

concepts and constructs.

• Learning Goal - One sentence description that tells students what they will learn and

serves as a reference for study.

• Read - Asks students to read (and follow along coding) a specific section of the book.

• Predict - Focuses students on understanding a misconception through code changes,

predictions, tests and reflections.

• Explore - Allows the students to gain confidence in manipulating, predictin-g and
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Figure 6.2. Example Section from Exploratory Homeworks
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reflecting on changes in code.

• Explain - Points out common misconceptions or validates students’ learning through

logical reasoning.

• Repeat - The students will do the above four sections until the required reading is

complete (order can vary).

• Questions - Allows students to self-assess their understanding and repeat sections if

they find they are confused.

Figure 6.2 provides an example of one section of an exploratory homework, as

well as the questions asked of them to check their understanding. The full texts of all 15

homeworks are available at www.peerinstruction4cs.org under CS Principles.

6.4.1 Learning Goal and Reading

Referring to Figure 6.2, the first step is a high-level learning goal: Reading and

Predicting What Loops Do. The explicit goal gives students context for the homework

and the chance to find examples quickly in the future.

The first two paragraphs then ask the student to read and follow along in the book

until a certain point. This step involves Kolb’s concrete experience and reflective observation

because students are asked to program what is in the book (passive) but also to ensure

understanding (review). Students are discouraged from reading the entire text before

attempting to follow the guided examples. Instead, they read small portions and then

stop to reflect, predict and “play around” with the code to satisfy their own interests and

curiosities. This encourages the students to work with small, doable goals versus large,

daunting problems.
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6.4.2 Explore

We choose to stop student reading where the book suggests that the student “try

something different” for the bunny’s dance. We enhance the book with some guidance for

this task. The first bullet says:

• In the bunnyWorld that is provided to you for this assignment, there is a bunny.

dance method. Read this method, try modifying it to make him do a specialized

dance, not just the generic one everyone is doing. After you have played with

the bunny.dance method and made your bunny do an awesome dance, go back

to your myFirstMethod.

This bullet emphasizes to the student how to actively engage in learning a new programming

language using three techniques: 1) Understand the current implementation, 2) Modify

the code, 3) Test to make sure the result is what was expected. This step is Kolb’s active

experimentation and abstract conceptualization. This also encourages students to read more

authentically (Kolb’s concrete experience).

Next, we ask them to follow instructions on creating code, but before running it,

to predict what will happen based on the code changes. This step is a form of reflective

observation in the Kolb Cycle. This active learning skill is especially useful in debugging

and will help students recognize errors based on prediction and reflection about code changes.

If the prediction does not match, it can either be an error in the code change, or an error in

their prediction, but either way the student gains more insight into the problem.

• We want to make the bunny do a “hop-once-dance-once” combo, which he then

repeats maybe 10 times. Add a DoInOrder inside of the loop. Put the call to

bunny.hop followed by a call to bunny.dance inside of the DoInOrder.

• How many times will the bunny hop? How many times will the bunny dance?

Is it 10 hops followed by 10 dances?
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• Now Press Play. Did it do what you thought it would?

These steps walk the students through the process:

Code change – Predict – Test

They also encourage them to re-visit the code and their hypothesis should there be a

discrepancy.

6.4.3 Explain

The next section points out a common mistake made by novices:

One of the most common problems people have with loops is knowing
what goes “inside” the loop tile and what goes “outside” (before or after)
the loop tile. Let’s try moving instructions around in and out of the loop
and predicting what it does:

By pointing out the struggles novice programmers have with nested loops, the student is

able to focus their attention on the intricacies of the loops that they will be working with in

the next Predict section. Students engage in Kolb’s abstract conceptualization and active

experimentation. By presenting a difficult concept, the students gain confidence when they

know that they are progressing and are prepared for lecture.

6.4.4 Questions

At the end of the entire exploratory homework there are 3-5 conceptual questions

that the students should be prepared to answer. This is Kolb’s reflective experience. The

goal is to support students coming in to lecture prepared so the instructor can delve into

more complex concepts.

1. Suppose I have a program that makes a guy wave after he walks up
to a girl. How would you change it to make the guy wave repeatedly AS
he walks up to the girl?

This is asking them to essentially do Explore and Predict, where they have to explore what

already exists, then predict the outcome of changes they would make and then test to make
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Figure 6.3. Student Survey Results for “How Often”

sure the actual outcome matches the scenario, or expected outcome.

The questions in this section are not meant to be tested in the Alice programming

environment; rather the students are expected to be able to do them on paper. At the

beginning of lecture, the instructor will give a quiz as described in Section 6.3.2. The

students will not have access to any computer or notes; therefore it would behoove them to

practice the questions in a similar environment.

6.5 Student Experience

From both an optional midterm survey (N=156) and a required end of term reflection1

we can provide information on the experiences students had with exploratory homeworks2.

6.5.1 Usage

Although we assigned exploratory homeworks for every lecture and had a quiz

covering the material at the beginning of each lecture, we’re not so naive as to think students

always did the homework, or did it in the manner we asked them to. When we asked students

how often they did the exploratory homework, we were pleased that just over 50% answered

most or all of the time. Additionally only 1/4 of the class said they rarely or never did it.

1All data is from the end-of-term survey unless otherwise noted.
2Students were told “effortful and honest answers, both positive and negative, will receive full credit.”
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Table 6.1. Students Approach to HW. (5% of students did not do the homework at all.)

Approach (recommented approach in italics) %

Read the textbook but don’t do the code in Alice 33%

Create the code in Alice as I read the textbook 30%

Just create hte code in Alice, skimming the textbook 15%

Create the code in Alice after reading the textbook 9%

Just read over the homework 8%

Why is this pleasing? We also asked students about their homework habits in other classes.

45% stated that they almost never do non-required homework in their other classes (though

26% thought they should, 19% said they didn’t need to). Since our homeworks weren’t

physically turned in, but motivated by a quiz, we were comparatively pleased.

We also asked students to indicate an approach that most correctly described the

approach they took to their homework. Table 6.1 shows that only 30% of students followed

the core portion of our approach: to work with the textbook and program simultaneously.

Perhaps to be expected, the largest number of students said they only read the

textbook - negating our true intent (though we don’t know if they also read the homework

prompts (prediction prompts, explanations) as well). Based on student open-ended comments

we expect that lack of easy access to a computer with Alice installed is a key factor.

Traditional study locations in the dorm or library would be a barrier unless the student had

their own laptop with Alice installed. In doing a post-hoc analysis of grades we were pleased

to discover that students who created the code in Alice both in following the exploratory

homework correctly and incorrectly (e.g. reading the textbook first or skimming it) did

do significantly better (4.6 points) in the course than those who did not do the exploratory

homeworks.

Finally, 76% students reported spending between 30 minutes and 2 hours on ex-

ploratory homework per week (averaging 40 minutes per homework). 10% reported spending
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Table 6.2. Homework Survey Results

Always Sometimes Never Total

Lecture 58% 41% 1% 156

Labs 42% 54% 4% 156

more than 2 hours per week. We were expecting students to spend a somewhat greater

amount of time on the exploratory homeworks. However a) 33% weren’t actually doing the

coding and b) student self-report of study time is a ¡100% reliable measure. On the other

hand, the fact that most students reported spending less than 2 hours a week is positive

(from the strategic view of teaching evaluations for a non-majors course). If they really

spent more time, but did not realize it, that’s educationally desirable.

6.5.2 Valuation

During week 5 of 10 in the quarter, we asked the students to take an optional,

anonymous survey asking 3 questions:

• Has the homework helped you understand lecture?

• Has the homework helped you with labs?

• Explain how the homework as helped you or why it has not helped you.

On questions 1 and 2 students choose between Always, Sometimes, and Never.

Question 3 was open ended.

There were five main points students brought up in their openended responses (all

grammar and typing is original):

• Step-by-step guidance allowed them to understand the material easier and learn

skills and techniques.

Sometimes it is not clear which examples will help us with the lab,
since the instructions depend on us to understand exactly how to utilize
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what we learned through the homework and lectures. Most times it
helps because it teaches us techniques and skills.

• Gave them prior-knowledge and therefore confidence in lecture and lab to discuss

and ask questions because they felt they knew what was going on.

I feel like I can help myself get ahead by doing homeworks before
class. I don’t have to depend on my team mates to have the answers
and I get to voice my opinion if I think they’re wrong.

• Gave them a chance to practice more than once, which helped them clarify confu-

sions they had the first time through.

The hw allowed me to experiment and try out new things on my own.
If there were any difficult concepts, it would stick a lot better if I
struggled and learned it on my own rather just have someone tell me.

• Showed them new ways of accomplishing what they want to do and to be more

inventive.

The homework gives me an idea of how to do new things. I get to
experiment with the ideas before doing the labs for them and that’s
good preparation.

• Pointed out debugging mistakes that they could make and give them a reference

when they make similar mistakes in lab.

Every homework assignment has helped me by explaining all the
coding and understanding what the program does. It’s really helpful
and I advise on people to do the homework because it gives a better
understanding when we have to solve our debugging mistakes.

One student in particular summed up his view of the role of exploratory homeworks

in reference to the rest of the course:

Homework teaches me the basics, class teaches me the details of how it
works, and lab allows me to apply what I’ve learned to real situations.
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This student has identified that the homeworks have allowed him to gain a familiarity with

the concepts, more so than passively reading the text. Since the course was taught using the

PI pedagogy, students were actively learning in lecture as well. The fact that the student

was able to continue learning more complex concepts during lecture reinforces that they

were ready to move on having done the exploratory homework. Finally, the fact that after

two homeworks and two lectures the student was able to apply what they learned in a “real

situation” (lab) indicates that the student had enough experience via similar problems to be

able to tackle new, complex problems on their own.

At the end of the term we asked students, retrospectively, if the times they didn’t (or

couldn’t) take the exploratory homework seriously had an impact on their learning in class.

62% said that it did hinder their learning in some way. 11% said it absolutely hindered their

learning. 51% said it sometimes did, it depended on the material. The others claimed that

they could usually figure out the material in class.

Finally, we wondered if the “spirit” of the homework would infect the students. That

is, we were modeling for students the kinds of activities that “real programmers” do, and

encouraging them to think about and explore concepts in the way we do. We asked:

How often did the exploratory homework prompt you to further experiment
with Alice? - e.g. by writing and testing fragments of code not explicitly
asked for in the homework, just to see what they would do?

24% of students said they did this all or most of the time and 34% did it “once or twice”. To

the extent that this informed “playing” somewhat reflects computational thinking, this is

pleasing.

6.6 Discussion

The role of the exploratory homeworks was to introduce and model for students

“active learning”, authentic approaches by which they can explore computing concepts and

constructs and therefore acculturate themselves in technical reading. We have also explored
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how the components of exploratory homeworks can be assessed via the Kolb Learning Cycle

- hopefully engaging students in an effective learning process. We hope both the methods

and confidence (through practice) that students gained will serve them as citizens who will

continue to learn and engage with new software and technologies throughout their lives.

Most notably, exploratory homeworks are a low fidelity way of introducing students

to technical reading strategies employed by experts in the field. They are designed such that

the students never get stuck and therefore can engage in authentic practice without an expert

present (outside of lecture or lab). Students are taught to read technical material with their

programming environment open, this is typical with experts in computing, but is discipline

specific. Students learning physics do not typically read a section on gravity and then throw

a watermelon off the roof to test the theories in the text. As described above, programming

involves a very unique experience in that students can interact with the computer directly,

getting feedback on behaviors and concepts they are learning. Exploratory homeworks

engage students in cognitive apprenticeship without requiring in-person expert guidance.

6.7 Future Work

Having developed the structure of the exploratory homeworks and seen indications

of students improved textbook reading habits and increased learning, we plan to develop

more exploratory homeworks for CS1 courses. During this second phase we will explore

the effectiveness of using the Kolb Learning Cycle as we do now (not necessarily in order)

against a more rigid structure.

We also plan to observe some students completing the exploratory homeworks and

ask them questions about their normal study habits as they compare to using exploratory

homeworks. Finally, we plan to follow up with students who have been working through

exploratory homeworks and see if they have transferred the textbook reading skills outside

of the CS0 course.
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We are eager to have a discussion with the community on how we might improve

exploratory homeworks, what other educators would need to support them in creation of

their own exploratory homeworks and advice they might have on measuring the effectiveness

of exploratory homeworks when they are often coupled with effective pedagogies in lecture

and tutorials in labs.

6.8 Conclusion

Exploratory homeworks are tools that encourage students to actively engage in

pre-lecture reading; this includes writing and debugging code as well as learning how to

read technical, static texts. Active learning is a technique that is often successfully used

in lecture and lab based settings, but rarely are students asked to actively learn on their

own, before lecture. Exploratory homeworks can enhance already active textbooks, like

the Alice textbook used here, as well as more expository textbooks. The biggest benefit

from students actively reading before lecture is they are able to come to lecture prepared to

learn more complex concepts and constructs enabling instructors to delve more deeply in

lecture. Students are also developing authentic computing habits by actively participating in

trial and error, predictions and reflections when learning a new programming language. We

encourage the community to create exploratory homeworks for CS0 and CS1 courses using

a variety of textbooks and report back on both effectiveness and challenges.
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Chapter 7

“Sparking the Fire” in Children to En-
gage in Computer Science

Chapters 3 through 6 show effective ways of enculturating undergraduate students

in a large university classroom, the following chapters will focus on how to similarly

enculturate children through a video game. Specifically, this chapter categorizes expert

programmers’ “origin stories” and designs a video game to engage children in similar

experiences.

7.1 Designing Authentic Learning Experiences Based on
Origin Stories

That minds are “fires to be kindled rather than vessels to be filled” was first expressed

by Plutarch and has become one of the most oft employed quotations within pedagogical

discourse. Still, there would appear to be some magic and mystery to the sparking of flames:

it is much easier to develop curricula and textbooks that seek to fill up minds with material

rather than to spark a love of learning. Not surprisingly, it is a rare student indeed that

catches fire in a classroom. Furthermore, our “factory” model of education has come under

such heavy criticism in recent years, [105, 77, 97] that one might begin to suspect that

some forms of institutional instruction may have a dampening effect on the sparking of

flames. This suspicion (further supported anecdotally by several decades of the authors’

114
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personal experiences in academia), prompted us to study the nature of flame-sparking by

investigating how such flames manifest themselves “in the wild” - i.e. outside of classrooms.

Indeed, the field of computer science is rife with stories of children (many strikingly

young) who discovered computers and taught themselves to program without the benefit

of formal instruction. We collected various such accounts from a variety of sources. The

following section gives a grounded-theoretical analysis of these accounts and begins to set

forth a list of five qualities that appear to correlate with the eventual sparking of a lifelong

love of programming.

We then sought to recreate these five qualities in a laboratory study with 40 girls,

ages 10 to 12, exposing them to programming for the first time using a video game called

CodeSpells, which supports many of the aforementioned qualities by default. Our goal

was to study these qualities “up close”, in order to refine our understanding of them. We

present the results of this second study in Section 7.4. Ultimately, using the insights gained

from our groundedtheoretical analysis and our laboratory study, we are able to further

illuminate how a passion for programming spark “in the wild”. Although our studies are

both of non-institutional learning environments, we believe (as in [132]) that the study of

these environments can help shed new light on the process of learning in general. Thus, in

Section 7.5, we discuss various contemporary software tools for teaching programming -

looking at them in the new light offered by our analysis of non-institutional learning.

7.2 Formal vs. Information Learning

In related literature, a distinction is generally made between “formal” and “informal”

learning. However, we prefer the terms “institutional” and “non-institutional” because, as

pointed out by Sefton-Green [132], the terms “formal” and “informal” are somewhat over-

loaded. “Formal” can refer either to “organized” (as opposed to “disorganized”) knowledge

acquisition or to “institutional” (as opposed to “non-institutional”) settings. This can lead to
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confusions: for example, one could imagine a disorganized (or student-driven) acquisition

of material within the confines of an academic classroom - which is difficult to classify as a

“formal” or “informal” experience. Thus, we use “institutional” (and “non-institutional”)

to make clear that we are discussing settings that fall within (or out side of) traditional

academic institutions.

There has been wide research on informal learning spaces, but relatively little that

pertains directly to non-institutional computer science education. The only two studies that

we know of both involve ethnographic research on how Scratch (a novice programming

environment) has been employed voluntarily by minority teenagers in a Los Angeles-based

Computer Clubhouse [114, 102]. Although, the clubhouse environment is technically an

institution, we classify the setting as non-institutional because it is not a traditional academic

classroom environment. Students have free rein over their activities and can even play video

games if they wish.

Thus, this paper adds to the small amount of prior knowledge on non-institutionalized

computer science education by performing two new studies, using two new methodologies,

and offering novel analysis of non-institutional learning to better illuminate the nature of

learning in general.

7.3 Origin Stories Study

Since our research interest lies in the notion of sparking flames that lead to lifelong

passions, we elected not to begin by studying existing non-institutional learning spaces - e.g.

the clubhouse-like settings mentioned above, or after-school programs. After all, the children

partaking in these spaces are (at best) only just beginning a lifelong computer science career.

Instead, we collected firsthand accounts from contemporary computer science professionals,

whose lifelong passions began in non-institutional settings. In this way, we hoped to be better

equipped to draw conclusions about the non-institutional learning qualities that correlate
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with long-term excitement toward programming.

Ultimately, we accumulated 30 of these “autobiographical origin stories” (as we

call them) from 3 different sources. We first drew 12 such stories from: 1) the Computing

Educators Oral History Project [32], and 2) a qualitative study performed by Hewner

and Guzdial [74]. To obtain more data, we also obtained 18 origin stories from 3) a

survey we conducted ourselves, wherein we instructed participants to respond to the simple

prompt: “Describe your first experiences with programming.” We sent out this survey to the

faculty and graduate student population at our university as well as to industry professionals

via email and LinkedIn. In all cases, we selected only first-hand accounts where it was

clear that the participants were describing their first experience as a programmer within a

non-institutional setting.

The demographics of the autobiographers were intentionally quite diverse: ranging

in age from graduating college seniors to industry professionals to retired. There were 11

males and 14 females. The genders of the 5 authors acquired from the study performed

by Hewner and Guzdial is not directly reported. Some accounts involved programming

on ancient Teletype machines, whereas others used modern hardware and environments

like Alice. Since our intention was to begin constructing a very general theory of effective

non-institutional learning environments, we felt that diversity was key.

7.3.1 Methodology for Origin Stories Study

Following the well-accepted procedures of grounded theory as set forth by Strauss

and Corbin [145], we first engaged in open coding, where we coded each sentence and

often time partial sentences. In the open coding, we found 13 subcategories: selfdrive,

enjoyable/emotional connection, “flow state” while programming, confidence/belief that you

can succeed, investment in the results of the code, empowerment, creation of “meaningful”

artifacts, lots of hours/re-visitation, access to immediate feedback, wrongness is on a

spectrum and is therefore not binary, access to support, feeling addicted, losing track of
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Table 7.1. Results of Grounded Theory coding of Origin Stories

Axial Coding Results Open Coding Results

Learner-Structured
Activities

Self-driven, Access to immediate feedback, Acces to
support

Exploration/Creativity
/Play

Creation of “meaningful” artifacts, Investment in the
results of the code

Programming as Em-
powerment

Enjoyable/emotional connection, confidence/belief
that you can succeed, wrongness is on a spectrum;
not binary

Difficulty Stopping “Flow-state” while programming, Feeling addicted

“Countless” Hours Lots of hours/re-visitation, Losing track of time

time.

We followed open coding with axial coding [145], which allowed us to derive 5

distinct categories based on the open coding. Table 7.1 shows how the open coding results

were connected to the 5 categories found in the axial coding and in the next section we

define and give examples to our 5 categories.

7.3.2 Results of Origin Stories Study

All 30 origin stories exhibited at least 1 of the 5 qualities. 20 of the origin stories

exhibited 3 or more.

Learner-Structured Activities: An activity is learner-structured when the learner engages

in activities that are not at all (or not entirely) structured by some outside force:

• “...when the Commodore PET came along and I took it home one summer and

taught myself BASIC”,

• “I was by myself with no assignments - just me and the computer to play with.”

• “I... bought books and wrote programs instead of taking courses in high school.”
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Exploration / Creativity / Play: The act of creation through experimentation and play was

common - a mentality of “What would happen if...?”

• “I’d also try to add things, so if it was print a ’hello world’ string, I would make it

ask for your name, and print ’hello ¡name¿’, and if your name was a friend’s name,

I’d add an inside joke or something.”

• “I would purposely try changing some of the parameters to see what would hap-

pen”

• “And we had gotten a Radio Shack computer and I had played around with that.”

Programming as Empowerment: Programming was commonly viewed as a means of

increasing one’s personal efficacy, selfesteem, sense of purpose, or social standing.

• “... so I was able to do it, and that gave me confidence that ‘I knew computers’”

• “To me, computers are freedom, they are entertainment and above all they are a

symbol of power and adulthood.”

• “Soon enough the computer was asking me what my name was and then asking me

how I was and addressing me by name. I’d made a new friend! I think my most

impressive program was when I got the computer to make different sounds.”

Difficulty Stopping: We expected to discover that the autobiographers found programming

enjoyable, but the origin stories included many accounts of how frustrating the process was.

The common thread, however, is that the act of programming was perceived as an engaging

and often addictive one - with descriptions liked being “hooked”.

• “That was a moment where I got hooked because just the sense that you could

program a loop that could do an array of any number of any size, any number of

numbers, just seemed to be such a fantastic thing.”
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• “When that actually worked, I thought it was the coolest thing ever, and after that I

was hooked =P”

• “[I was] becoming so closely involved with technology... [that] I was a little afraid of

being sucked into the CS major stereotype...”

• “I went for Mechanical Engineering. But my liking for computers never died... and

I took some private computer courses on the side”

“Countless” Hours: This is closely related, but distinct from, difficulty stopping. (Some

autobiographers did not exhibit signs of addiction but still invested large amounts of time for

other reasons.) Many origin stories describe spending so much time that the autobiographers

could not readily quantify the amount, tending to use abstract generalizations like “countless”

or “dozens” or metaphors like “journey” (which imply a large timeinvestment).

• “I wrote countless Pascal programs on my old PC. (I still have some of the old code,

printed out, somewhere!)”

• “My journey has been full of excitements. Since the beginning I have enjoyed

computers.”

• “So back then it was really very labor intensive, was not instantaneous by any

stretch of the imagination..”

• “I read the guide to my TI-89 calculator a dozen times, learning to make simple

games or programs in it.”

We stress that this study was intended to be a preliminary theorybuilding endeavor,

not a means by which a definitive, overarching theory was to be achieved. Indeed, the main

intent was to inform and structure the laboratory study that followed it.
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7.4 Lab Study

Our laboratory study was intended to “enhance theoretical sensitivity” [145] through

the use of questioning - moving a step beyond the brief, straightforward nature of the origin

stories.

We wanted to be able to determine if 1) the above five qualities could be recreated

under laboratory conditions, and if so 2) to study them “up close” in order to enrich our

theoretical understanding of them. Furthermore, we contend that performing laboratory

studies on non-institutional learning is extremely important if one’s ultimate goal is to learn

from non-institutional learning in order to help inform institutional learning environments.

After all, a laboratory lies somewhere between a fully institutional setting and a fully non-

institutional setting. This means that lessons learned in a laboratory may be more easily

transferable to a classroom than lessons learned in the wild.

7.4.1 Methodology for Lab Study

Software and Experimental Setup

CodeSpells is an educational video game - more specifically, an immersive fantasy

role playing game designed to teach Java programming by immersing the player inside a 3D

virtual world and a first-person storyline wherein she plays the part of an apprentice wizard

[26]. CodeSpells teaches Java by giving players access to a novice-friendly API for crafting

novel magic spells.

We chose to use CodeSpells because its magic metaphor has been shown to be

compelling and exciting to novice learners [ibid]. We felt that the game would be an

engaging environment for girls in the 10- to 12-year-old age group.

Normally, learning in CodeSpells is encouraged by way of a series of quests that must

be completed with the use of Java-based spell crafting. However, we particularly wished to

study learner-structured activities and creative exploration. So we employed a version
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of CodeSpells that did not have explicit quests to complete. (The CodeSpells platform is

quite extensible). Rather, players could walk up to in-game gnome-like characters who

would give various spells to the player, along with simple explanations. Our hope was that

these spells would serve as starting points for code exploration.

We recruited forty girls (ages 10 to 12) who had no prior programming experience

in any language or programming environment. We gave them a short overview of the

CodeSpells game mechanics - including how to write and edit code with the in-game IDE.

We divided them into 12 groups of three and 2 groups of two, and encouraged them to

explore the 3D world and to see if they could “do interesting things”. We were purposefully

vague, as we hoped to encourage a largely unstructured learning environment.

We then allowed the subjects to play CodeSpells for one hour while we observed.

Data collection techniques during this time involved video and audio recordings of 6 groups;

video was of the computer monitor so that we could record actual gameplay. We also

assigned one undergraduate computer science major to each group; each undergraduate took

notes on what the girls struggled with. Our main research team also took observational notes

as they walked around the lab.

After one hour, we split the girls into groups of 12 to 15 members and engaged

each group in a semi-structured group interview. The interview involved questions such

as: “Describe what you have been doing for the past hour.”, “Can anyone share something

interesting they did in CodeSpells?”, “Can anyone share something they were trying to do,

what did you do to try to make it happen?”, “Did anyone get stuck while playing, what did

you do when you got stuck?”, “If you had more time, what would you want to do next?”,

and “Can anyone describe to me what spells are and how you use them?”. Data collection

during the group interview was videotaped and the interviewer took brief notes.
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7.4.2 Results of Lab Study

Our subjects played CodeSpells for the entire hour before we had to ask them to stop.

Students expressed disappointment that it was “over so soon”. 25 of the subjects showed

interest in playing CodeSpells at home and wanted to know when it would be available for

them to play. We consider this to be evidence that students experienced some difficulty

stopping. And the lingering excitement is a rough indicator that novices might indeed play

such a game for “countless” hours - though we would need to allow our users to play

CodeSpells at home to measure this further.

Of the 6 groups of girls we recorded, roughly 90% of their time was spent exploring

the 3D world and/or editing code (as opposed to, say, chatting amongst themselves). Also

interesting is that the quest-less version of CodeSpells provides considerably less structure

than most video games. In spite of this, subjects did not ask “What am I supposed to be

doing?”, nor did they seem at a loss for activities to engage in. The simple directive to “do

interesting things” was sufficient for inspiring subjects to give structure and shape to their

own activities. This strongly suggests that a learner-structured mentality arose within the

lab study.

Some subjects tried changing method calls like thing.levitate(3) to thing.hop() or to

thing.blowup() (which are not available in the API but are surprisingly correct syntactically).

Even though these attempts failed to evoke the desired effect, students did not appear to

become discouraged. Subjects also discovered quite valid changes in this way too - e.g.

thing.levitate(300000). This suggests a drive to explore, play, and create. And furthermore,

this drive appeared to be fueled (rather than dampened) by syntax errors. Of the 6 groups

video taped, 4 of them encountered some syntax error that they resolved either by undoing

the error they introduced (55% of the time) or asking the undergraduate student that was

near them (45% of the time). In all cases, acts of self-structured activities followed these

interludes.
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A particularly interesting phenomenon occurred with regard to what one might call

“logic errors”. One group of girls made the mistake of levitating an object so high into the

air that it could not be reached. They were able to retrieve the object, however, by jumping

onto another object and levitating it (and thus themselves) sufficiently high enough to reach

the original object. This emergent use of code to surmount challenges of one’s own making

is an act that fits our definition of exploratory play. Logic errors were seen in all 6 groups

recorded, but we note again that the exploration seemed to be fueled (rather than dampened)

by things going awry.

During the lab study and more so in the group interviews we were encouraged to

hear that the girls felt empowered. When changes to the code didn’t accomplish what

they wanted, they kept working towards their goal, trying different spells or different code

changes until they eventually reached it. When asked about how they reached their goals,

they conveyed that they “knew it could be done” and that they “just needed to figure out

how”. They described code as a “way to accomplish anything” within the 3D environment.

At no point did they describe programming as a barrier to the self-structured activities and

creative exploration in which they chose to engage.

7.5 Discussion

7.5.1 Refining the Theory

With the benefit of the laboratory study, we were able to study 4 of the aforemen-

tioned qualities (with the exception of “countless” hours) up close. Our observations

allow us to add a quality that seems to go hand in hand with exploratory play. Namely,

A positive attitude toward “failure”: An institutional setting often provides an objective

and authoritarian definition of what “success” and “failure” are. It was striking to observe

that, when left to their own devices in a non-institutional setting, subjects approached what

would traditionally be labeled as “failures” (syntax and logic errors) without the slightest



www.manaraa.com

125

apparent awareness that they had done something “wrong”. No one had ever told them that

syntax errors were bad or that code ought to do what one expects it to.

Thus far, we have presented two studies, 1) a study of origin stories in computer

science and 2) a laboratory study of 40 novice 10- to 12-year-old pre-programmers. In the

first study, we were able to tentatively identify 5 qualities that correlate with noninstitutional

learning in such a way that leads to the sparking of a lifelong passion for computer science.

In the second study, we showed that at least 4 of these qualities (all but “countless” hours)

could be recreated in a laboratory setting. We further observed a striking relationship

between a positive attitude toward “failure” and the tendency to engage in exploratory

play - allowing us to further enrich our theoretical framework. We believe that further study

of non-institutional learning is critical if we, as educators, wish to better understand how

the sparking of young minds happens in the wild. We feel that a clearer understanding of

the conditions under which such a seemingly mysterious phenomenon naturally occurs can

serve to shed light on how to recreate this phenomenon more readily within institutional

settings. Moreover, though, the theory we have developed so far can help enrich modern

pedagogical discourses - for example, the ongoing discourse about tools for teaching novice

programmers

7.5.2 Applying the Theory

Even though a comprehensive theory of non-institutional learning is perhaps a long

way off, the aforementioned theoretical framework is already sufficient to allow for existing

tools to be discussed with a new vocabulary, leading to new insights. Consider, for example,

some common tools for teaching introductory programming.

Novice IDEs

Scratch is a visual programming environment designed to allow novice programmers,

particularly young programmers, to create media-rich results by dragging programming
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blocks into place to create programs [101]. The 3D Alice environment is a friendly IDE

serving as a “stepping stone to computer science careers” [34]. Alice provides an experience

that allows users to make their own movies or video games.

Such environments allow the production of visually stimulating effects - which

certainly gives young pre-programmers more avenues for exploration, play, and creativity.

On the other hand, it is not clear whether such environments encourage the other

four qualities. For example, these environments do not overtly seek to motivate learner-

structured activities. Likewise, there is no overt effort to induce “countless” hours of

practice. On the other hand, nothing in Alice or Scratch overtly prevents learners from

spending “countless” hours on learner-structured activities. Then again, nothing overtly

prevents a student from opening up Eclipse and playing around with Java for hours on end.

It is no doubt a rare occurrence though.

When the above are embedded within a classroom environment, “countless” hours

can easily be required of students - but at the risk of sacrificing learner-structured activities

and exploratory play. A natural place to look for solutions to this problem is in educational

video games.

Educational Video Games

There exists a long history of educational video games, some of which are intended

to teach programming [48, 86, 4, 123]. Although programming-related educational games

to date have not gained widespread popularity, one can still examine video games (in general)

in light of the framework.

Learner-Structured Activities: Video gaming tends to be a selfdriven and self-

structured activity - even for individuals who are too young to apply the same kind of

self-motivation to academic subjects.

Exploration / Play / Creativity: Games can be used to create rich 3D worlds that

facilitate exploration. In CodeSpells, for example, the interplay between objects, physical
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laws, and magic makes for emergent properties that drive play and exploration.

Programming as Empowerment: In CodeSpells, for example, the code a player

can write directly correlates with the efficacy of that player within the 3D world. What one

can code and what one is empowered to do go hand-in-hand.

Positive attitude toward “failure”: Games are not always enjoyable. Players can

lose. Characters can die. Tetris blocks don’t always fit. Frustration is as common as euphoria.

Yet it doesn’t seem to phase gamers and is indeed an integral part of the experience.

Difficulty Stopping: Indeed, while not always strictly an enjoyable experience,

video games inspire an unprecedented level of active engagement that (for some) borders on

addiction.

“Countless” Hours: The gaming industry is a multi-billion dollar industry. At

least one study shows that children spend 10,000 hours playing video games throughout

childhood [122]. Clearly non-educational video games do spark lifelong passions... for

playing video games.

One might then ask, if video games have all the requisite qualities, why aren’t

educational video games routinely sparking lifelong passions for all sorts of academic

disciplines? Our response would be to point out that many explicitly educational video

games actually lack some of the above qualities.

It is difficult for many educational games to support creative exploration. Consider,

for example, the classic Math Blaster. In order to provide positive and negative feedback

to the player, the game must be able check the player’s answers to mathematical problems.

This means that the game can only serve-up a series of checkable problems, each with an

objective right or wrong answer. There is no room for creativity. The game cannot say to the

player: “Do something mathematically creative. You’ll get more points the more creative it

is.”

Similarly, many educational games have been criticized and called “chocolate-
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covered broccoli” [20] because the educational material interrupts what would otherwise

be smooth gameplay. In other words, the education interrupts the fun stuff. Or, to put it

the other way around, the fun stuff (chocolate) is intended to thinly disguise the education

(broccoli). No doubt this has a detrimental effect on the difficulty stopping and the tendency

to engage in “countless” hours.

In conclusion, it would appear that both novice-friendly IDEs and educational games

alike leave something to be desired from the standpoint of sparking lifelong passions for

programming. The gamification of programing environments like Alice or Scratch might

be one solution. CodeSpells, for example, seeks to combine the best aspects of educational

games with the best aspects of novice-friendly IDEs.

7.6 Future Work

Our main goal is to use lessons learned from highly successful non-institutional

learning to shape and inform institutional learning. To this end, we are currently conducting

a 6-week-long class in which unstructured play time in CodeSpells is supplemented with in-

class instruction. Also, we have developed a multi-player, competitive version of CodeSpells,

which we are utilizing to examine the non-institutional learning environment that has sprung

up around a competitive CodeSpells team that practices three times a week while we observe.

Our grounded theory study on origin stories was somewhat limited because we

reviewed static, written text and were not engaging in interviews. We would like to further

define our 6 categories that classify non-institutionalized learning spaces through a series of

interviews where we could employ the grounded theory technique more rigorously. This

study has introduced us to the theory, but we would like to define this theory more detailed

so that other education researchers may apply it when examining and creating tools and

environments for novice programmers.
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7.7 Conclusion

We take the position that it is highly relevant to study non-institutional learning

in which young people teach themselves to program. We analyzed the origin stories of

30 individuals who eventually became successful in computer science. We identified five

qualities that tended to occur across multiple origin stories and that can be tentatively posited

to correlate with the sparking of lifelong passions for computer science.

To more deeply study these qualities, we performed a laboratory study with 40 girls

(ages 10 to 12) and analyzed their experiences according to the aforementioned five qualities.

This allowed us to refine our understanding of these qualities and even to observe a sizth

quality - further deepening the theoretical framework.

Our contributions are three-fold:

• We give the first theoretical framework for understanding the conditions under which

the sparks of lifelong learning are sparked in non-institutional computer science

learning environments.

• We demonstrate two novel methodologies for further examining non-institutional

computer science learning. (The small amount of prior work that exists uses only in

situ ethnographic methodologies.)

• We contribute a new vocabulary for discussing and designing tools for novices, using

our theoretical framework to point out opportunityes for improvement in both novice-

friendly IDEs and educational games.

Ultimately, we take the position put forth by Maloney et al. - namely, that studying

non-institutional learning is a means by which to understand learning in general [101]. After

all, non-institutional learning has a unique character. It is unstructured. It is creative. It is

play. Also, as we saw in our laboratory study, the absence of values implicitly instilled in
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institutional settings (e.g. that syntax errors are bad) can lead to differences in behavior. As

such, the study of non-institutional spaces may serve as an untapped resource for computer

science educators a resource that can help inform how we structure our institutional spaces.

We believe the study of these space can yield surprising new insights about what were doing

right as well as what we may be doing wrong. Ultimately, it is a line of research that can

give us new ways to light fires and to keep them lit.
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Chapter 8

Embodying the Metaphor of Wizardry
to Support Enculturation

Chapter 7 introduced the authentic design of CodeSpells based on real experiences

of expert programmers. In this chapter, we study the effects of wizardry and magic on

the enculturation of children. Though CodeSpells was designed to engage children in

authentic experiences, we show that we leverage that it is a video game to further enhance

that experience through the embodiment of the metaphor.

8.1 Embodiment in Novice Programming Tools

Novices have often struggled with learning to program, often times due to their

inability to connect abstract programs with their effects on the environment. Novices can

also struggle with low self-efficacy due to their dis-immersion with their programming

environment. In this paper we present features of CodeSpells [55] that make this environ-

ment particularly immersive and therefore an environment where novice programmers are

encouraged to try hard and not to become discouraged.

Though there has been much improvement in novice programming environments,

with visual programming such as Alice or Scratch [46, 101], gamified environments such

as Kahn Academy and Codecademy, and applied environments such as Media Computation

[68], we believe that none has immersed the novice into an environment that not only

131



www.manaraa.com

132

encourages a deep understanding of the concepts, but also to instills a sense of determination.

In the next section we discuss how other languages and environments compare with

CodeSpells. We then go deep into the API of CodeSpells, discussing the immersive and

applied properties that we believe create a unique novice experience. We then present

findings from an exploratory study and discuss the implications and future work.

8.2 Related Work

8.2.1 Programming Languages

Languages such as Pascal and BASIC were early efforts to make programming

concepts easier for novices [83] by sacrificing some degree of authenticity. Today, tools

such as Alice [46], Scratch [101], and Lego Mindstorms [90] take this trend to its logical

conclusion, providing a syntax-free programming interface that involves dragging and

dropping blocks of a program into their appropriate places. Similarly, the Toque [147] and

Tern [76] systems allow programs to be constructed by acting out cooking actions (in front

of a Wii) and by assembling physical blocks.

Yet, there has been a counter-trend toward teaching industrystandard languages in

academia, at least to computer science majors. This has resulted in an Optimal Novice

Language Debate over which industry-standard language strikes the best balance between

palatability and authenticity [47, 11, 78, 103, 142, 75].

CodeSpells avoids these either/or tradeoffs. It relies significantly on rich gameplay

to inspire players to engage with challenging programming concepts and syntax in ways they

might never voluntarily do otherwise. Also, the implementation of CodeSpells is factored

into both game engine and programming engine, enabling the use of whatever programming

language is preferred.

One of the design goals for CodeSpells was to immerse novice programmers in

the effects of programs, specifically by focusing on video game features. Guzdial has
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penetrated the CS1 curriculum with his Media Programming pedagogy [68], which adds

novice-centered libraries to Java and Python in order to assist programmatic manipulations

of photographs, audio clips, and other rich media. Although students are not necessarily

immersed with Media Computation, they are introduced to the complex concepts through an

approachable (known) application: photo manipulation. Even if students do not have experi-

ence with programs such as Photoshop, they understand the basic effects of photography

(e.g. greyscale, green-screen effect).

On the other hand, environments such as Scratch [101], Alice [46], the Logo family

[95], and Lego Mindstorms [90] engage the user by providing a scene that can be watched

and explored. This allows students to fully control the environment they are effecting and

therefore better understand implications of changes they make in the code. Though these

environments offer a scene where students can watch coding effects in real time, they tend

to sacrifice authenticity for this “immersion”. CodeSpells, on the other hand, increases

engagement and therefore authenticity.

8.2.2 Context of Programming

By giving the novice programmer a new domain in which to work, programs can

take on a new significance, enhancing the learner’s motivation and persistence. Recent

enhancements to the “How to Design Programs” methodology [59] provide a scheme

environment for programming 2D animations. As programming environments, both require

external learning support and lack the motivational hooks provided by a first-person video

game.

Logo programs allow the user to mobilize an on-screen “turtle”; Alice and Scratch

programs allow the user to create 3D and 2D animations (respectively); and Lego Mind-

storms programs allow users to affect microcontrollers embedded in a Lego apparatus.

The completeness of CodeSpells’ contextualizing metaphor means that the game

requires neither supplemental lectures nor textbooks, like the systems above.
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All learning resources are seamlessly interwoven into gameplay, making the game

into a self-contained learning environment that can be used even where formal instruction is

unavailable. In addition, the storyline and 3D environment provide added engagement to

sustain motivation, say, in the absence of an external motivator. This significantly increases

the sense of immersion amongst students, not ever being taken away from the programming

environment to “learn a new concept” and instead finding them throughout gameplay.

The quests provide novices with pedagogically relevant tasks. Coding constructs

are introduced via the spellbook. Reasons to persist come from the first-person storyline,

badges, and visually stimulating 3D environment.

Likewise, the CodeSpells approach is also distinct from the many popular game

building environments, many of which are used in classrooms: e.g. Greenfoot [86], NetLogo

[48], Unreal Scripting [52], the RPG creator [126], the Starcraft map editor, Kodu [100],

the Spring RTS Engine [143], and ToonTalk [81]. CodeSpells is an RPG (Role Playing

Game) that more fully immerses the students in the gameplay, but also in the learning. Most

games used in the classroom require the students to be the “builders” or “engineers”, but not

actually be affected by the code. We wanted to focus on the students “feeling” the effects of

their modifications and programs, not just “witnessing” them.

8.3 A New Programming Context

8.3.1 An Immersive Video Game

The Metaphor

Magic. Magic is a metaphor that crosses both programming and fantasy RPGs. In

programming, what an expert programmer can do is often referred to as “magical”. As

Brooks states “The magic of myth and legend has come true in our time. One types the

correct incantation on a keyboard, and a display screen comes to life, showing things that

never were nor could be” [18]. It can then be considered that expert programmers have
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a suite of “magical spells” that they can use at any time to solve various problems. These

spells might be small programs they have written, methods, or simply concepts they now

understand (e.g. the “Iterate through an array spell”).

Similarly, in most fantasy RPGs, players often have magic spells that they can use

at any time to solve various problems. Comparable to the “spells” of expert programmers,

RPG players may start with simple spells, and have to earn and learn how to use more

complex ones. CodeSpells embodies the idea of “spells” as both an artifact that players can

see, read and write and also an executable object that players can use to interact with the

world and solve problems.

Figure 8.1 is an example of the spellbook provided to players as an in-game resource

for game-play and learning. To fully immerse the players in CodeSpells we designed a

similar resource that they might find in any other fantasy RPG, a spellbook. This spellbook

provides them with information about how spells work and when they might be useful.

Players can use the spellbook, along with the Non-Player Character’s advice, to navigate

through quests.

Most importantly though is the spellbooks dual purpose as a learning resource.

Players are encouraged to read through the spellbook, but also to execute spells to test

them out. Being in a non-competitive environment allows them to take their time in fully

understanding the effects and limitations of each spell. Modifications can easily be made in

the in-game IDE shown in Figure 8.2. This particular resource is the gate to programming

within CodeSpells and is essential to immersion and embodiment.

8.3.2 Designing for Embodiment

In this section, will explore the API of CodeSpells, paying particular attention to

how we designed classes and methods to encourage players to understand the effects of

spells (programs) from a first person perspective.
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Figure 8.1. Spellbook for in-game resource (solving challenges and quests) and learning
(understanding Java concepts).

Figure 8.2. In-Game IDE that allows players to make modifications to the code very easily
to test effects and limitations of spells.
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An Innovative API

We designed our API to be similar to that of Java web applets where Applet is

subclassed and the run() method is implemented, by having a superclass Spell and subclasses

that implement the cast() method.

The first spell that is provided to the player in their spellbook is the Flame spell. The

player casts this spell onto an item that is flammable, and then the item is set on fire.

public class Flame extends Spell{

public void cast(){

Enchanted thing = getTarget();

thing.onFire(true);

}

}

Our first challenge was making the spells powerful enough such that players could

interact with the environment relatively easy, but authentic enough such that players could

engage with the typical concepts presented in a CS1 course. We studied the balance of power

and authenticity in Guzdial’s Media Computation and within Alice and Scratch and decided

on a threshold close to reality, allowing players to easily accomplish tasks that are easily

done in the real world (setting something on fire, moving forward), but having difficult tasks

be represented as complex spells that combine the simple API calls and typical CS1 level

concepts such as loops, conditionals and parameters.

In addition to making complex magic difficult to attain, we wanted other, intuitively

mundane tasks, to be easy. Our rule of thumb was that if it a task is typically performed

without much conscious thought by someone in the real world, then it should require a

minimal amount of code in the fantasy world. One such intuitive task is the ability to specify

and talk about things in the world around us. We do this with various combinations of



www.manaraa.com

138

pointing, gesturing, and naming – all of which can be done with little conscious thought.

We felt that if such intuitive tasks required a non-trivial amount of code to be written then

players would quickly become frustrated at the API’s lack of expressiveness.

We tested the limitations of our API with 3 intermediate programmers (undergraduate

students in the computer science major) making as many complex spells as they could in 3

months. We observed them during this process, improving upon the API when they struggled

due to a minimal API. Though further refinement might be done once a larger scale study of

CodeSpells and it’s learning effects is complete, we are confident that the level of specificity

in our spells will promote the understanding of typical CS1 learning goals.

Two key outcomes of this design process are intuitive mechanisms for (a) expressing

entity reference and (b) specifying spatial manipulations. As will be seen, the basic design

rule that emerged was to make the API work in ways that are analogous to the way humans

think and work when performing everyday tasks. That is, not only should the interface

make mundane tasks easy, but the interface should be easy to understand by analogy to

everyday experience. As a result, there is a degree of embodiment designed into many of the

operations, via reference to the avatar. In the next section we will explore how embodiment

played a role in the effects of CodeSpells on novice programmers.

8.4 Embodiment

8.4.1 Referencing Objects

Entity Reference

Obtaining a Java reference to a particular entity in the 3D world is something we

wanted to make as easy as possible. We handled the trivial case using the aforementioned

getTarget() function to reference any individual entity that the apprentice wizard is able to

see and point to – i.e. entities in close proximity to the player’s embodied location in the

virtual 3D world.
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However, during the course of working with our intermediate programmers, it

quickly became necessary to refer to more than one game entity, for example to move one

entity to the location of another entity. Thus, we added the ability to reference certain special

entities by name. For example, the player may obtain a reference to their own in-game avatar

by writing Enchanted e = getByName(“Me”). To make this practical, we gave permanent

names to certain fixtures in our environment – e.g., “Me” and “Rain”, which the wizard can

learn by reading her spellbook. The following spell can be used to make the local rain cloud

named ”Rain” follow the player around:

public class SummonRain extends Spell{

public void cast(){

Enchanted rain = getByName("Rain");

Enchanted myself = getByName("Me");

while(true){

Direction toward_me =

Direction.between(rain,myself);

rain.move(toward_me, 5);

}

}

}

Not all entities are so special, of course. If a player wants to refer to a particular

rock in a spell, she can give the rock a name and then later use getByName() to obtain a

reference to the rock.

Referencing Groups of Entities

When building a bridge out of 20 rocks, however, our interns found it tedious to give

a name to every rock and to declare 20 variables of type Enchanted. We handled this by
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adding API support for defining variably-sized lists of entities.

Our first attempt was to provide support for querying a radius around an entity

(identified by getTarget()) using a getWithinRadius(float) method. However, it was too easy

to accidentally obtain too many rocks, too few, etc. The root of the problem is that a radius

of size X is difficult to visualize before casting one’s spell.

The solution to this problem was to bring the senses into play. We designed a magic

staff that can be used to designate a static area of effect. Putting the staff down on the ground

displays a radius within which all entities are selected, and a textual name for the area is

displayed above it. The area’s radius can be resized to suit the player’s needs. Supposing

a staff has been used to create an area, and it has been renamed to “Fire Trap Area’”, the

following spell lays a permanent trap for one’s enemies:

public class FireTrap extends Spell{

public void cast(){

Enchanted area = getByName("Fire Trap Area");

while(true) {

EnchantedList list = area.getWithin();

for(Enchanted e : list)

e.onFire(true);

}

}

}

Vector Math

Another challenge was to allow novices to manipulate entities in 3D space without

expressing their ideas in the language of linear algebra, trigonometry, or geometry. That

is, our API had to provide intuitive ways of performing spatial manipulations without

using mathematical syntax. After all, human beings are able to perform a wide variety of
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spatial tasks (driving, building with blocks, throwing balls, etc.) without formal math skills.

Because CodeSpells is a first-person game, we were able to simplify the API by leveraging

the player’s existing embodied intuition. That is: the ability to easily move and rotate one’s

avatar, and to write code that is dependent on the avatar’s location and rotation, gives the

player a surprising amount of expressivity without the need for higher-order mathematics.

In CodeSpells there are 4 avatar-referenced directions – forward, backward, left,

and right and 6 world-referenced directions – up, down, north, south, east, and west. The

following spell uses the ”forward” direction to allow the player to fly when standing on

top of the spell’s target entity (e.g., a magic carpet). Because ”forward” is dependent on

the direction the player is currently looking, the behavior of the spell is affected at runtime

by the player’s movements and head rotations, flying in whichever direction the player’s

embodied avatar is currently looking.

public class Flight extends Spell{

public void cast(){

Enchanted target = getTarget();

while(true){

target.move(Direction.forward(), 0.2);

}

}

}

The flight spell is a good illustration of our general approach: Just as human beings are

trivially able to push physical objects along their “forward vector’” in the real world – we

wanted players to be able to easily employ magic to move objects forward in the fantasy

world. Also, just as human beings can trivially comprehend how their own bodily rotations

change what ”forward” means, we wanted spells to be able to make dynamic adjustments

when the player’s avatar rotates. Aside from this use of the API’s powerful and intuitive
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spatial affordances, the only “magical”’ API call used above is the basic move() operation.

But it has been wrapped within a non-terminating Java control structure, so that it will

run until the player manually stops the enchantment. Until then, the player can fly freely

throughout her virtual 3D environment without knowledge of the underlying vectors and

quaternions that make this possible.

Emergent Pedagogical Properties of Embodiment

The experience of embodiment instilled by immersive RPGs gives a CodeSpells

program (spell) the potential to take on more personal significance than, say, a program

written in Alice or Scratch. Rather than making movies or games (as in Alice or Scratch), a

CodeSpells player is able to live out fantasies that are essentially embodied. By jumping on

top of an inanimate object and casting the flight spell, a player can live out the fantasy of

flight. Many of our users have expressed that this is enjoyable.

Thus, the emotional payoff for learning how to program in CodeSpells can be high.

Furthermore, because we have designed the APIs for simplicity, a spell of just a few lines

stands in the way of the novice and these moments of accomplishment and joy. The learner

only needs to meet a handful of learning goals before receiving positive feedback.

8.5 Evaluation

After validating that the CodeSpells API and environment would make it possible

for programmers to design and write spells (programs) that were using typical CS1 learning

goals, we decided to conduct and exploratory study to understand how novices responded to

the API. Specifically we were interested in the ability of the novice programmer to:

• Use the spells correctly without modification,

• Modify the spells correctly to accomplish a desired goal and

• Create their own spells using the API that currently exists.



www.manaraa.com

143

Figure 8.3. Study Demographics.

8.5.1 Methodology

We recruited 17 subjects to play CodeSpells (see Figure 8.3). None of the subjects

had prior programming experience in any industry standard language but all knew what

“programming” meant.

Each subject completed a background questionnaire before attending the study.

Before the study began each subject was walked through the game mechanics by one of our

research team. We then encouraged them to attempt to solve the quests in the game, but did

not provide any other guidance or assistance unless they requested it. We recorded each

session with standard-video equipment. Finally, we conducted a 15-minute semi-structured

exit interview where we queried their immersive experience.

8.6 Results

Due to the explorative nature of this introductory study we were able to receive very

intriguing results on the game-play behavior of our subjects. We will first discuss their

ability to interact with the programs then discuss their sense of immersion in the game.
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8.6.1 Using Spells

It is very encouraging that each one of our subjects was able to successfully cast at

least 6 of the 8 spells that were in their spellbook (meaning they were able to successfully

execute 6 of the 8 small Java programs). The documentation provided in the spellbook

was not as detailed as a textbook or a tutorial, therefore to read and test spells which led

to a correct understanding of those spells within only a 45 minute period with no prior

experience with the CodeSpells API or any Java was astounding.

8.6.2 Modifying Spells

We also witnessed an average of 20 code edits in each 45-minute session. A code

edit is defined as a successful change in a method argument, number of loop iterations, an

entire API call or moving/adding/deleting entire lines of code. This level of interaction with

code was surprising to us, especially since each code edit was a positive change towards a

desired goal.

8.6.3 Creating Spells

Finally, 2 of our subjects were able to successfully write their own spells. Only

2 of our subjects wrote their own spells because in the short session only 2 were able to

successfully complete all of the 8 challenges presented to them. Once they had completed

the challenges, they were able to come up with their own challenge and design their own

solution for it. One of these subjects designed a particularly interesting spell: a portal spell

that used the staff (introduced in Section 8.4.1 that was meant for referencing many objects)

to create a portal on one side of the river and send anything that stepped inside the portal to

the other side. This innovation in such a short period was very positive.
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8.6.4 Physical Immersion and its Value System

As is the case for perhaps all game designers, our intention was to architect a new

world – to fully recontextualize computer programming. In our case, we wanted a world

where magic exists and where wizards can break the laws of physics. But more than a world

with new mechanics, we wanted a world with new values – one where the protagonist feels

entwined with the fate of the world, one where one’s education is meaningful and valued,

one where executable code is an exciting arcane mystery rather than a ”thing for nerds”, and

one where anyone can safely learn those mysteries. We focused on the exit interviews to

gather information about the effects of the immersive properties.

Physical Immersion. In each of the exit interviews, subjects talked about how their

programs affected their world. When asked about times when they might have struggled a

bit to accomplish a task, they typically described the situation as “I was trying to levitate

the rock that I was standing on, but then I accidentally clicked on it and I fell off”. It was

also interesting to hear how these subjects would talk about this environment with others.

When asked if they would play CodeSpells with peers, one subject responded “Yeah, that

would be cool because we could work together to do harder things. Like I could levitate

a rock while they caught it on fire.” In our informal experience with students using other

interactive environments, such as Alice, these speech acts differ in that our users seem to

have an embodied experience with CodeSpells, whereas Alice users typically talk about the

objects in the scene in the third-person.

Values Immersion. Along the same lines, using the environment of a video game

was also very interesting as it applied to immersion. Our players seemed to not give

up easily when attempting a difficult quest or challenge. This was evident by their exit

interviews, when asked about their experience with particularly difficult challenges, one

subject described her approach by saying “[I] never gave up – because it’s a video game!”

This is not a typical sentiment held by novice programmers, especially with girls we often
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see a feeling a failure or discouragement when the program doesn’t work properly. In this

case, the immersive features seemed to have made the difficult challenges fun.

It seems that through the CodeSpells API, environment and metaphor, our subjects

became immersed in their programming, something we hope all novices can do in an

introductory setting.

8.7 Discussion and Future Work

This study is particularly interesting to the computer science education community

because it has begun to address two major concerns: 1. Students’ inability to understand

how abstract programs effect the environment and 2. Students’ determination to succeed

during difficult programming challenges. We are excited by these initial results and are

encouraged to continue this research with more subjects over longer periods of time.

In the next three months we will be running a large CodeSpells study with 35 9-10

year old students in a near-by elementary school. During this study we plan to fully examine

and explore the immersion properties of CodeSpells and how each aspect (the API, the video

game features, the 3D environment) effect student motivation, learning and efficacy. We are

also interested to see how CodeSpells compares with programming environments such as

Media Computation and Alice. We believe that CodeSpells will offer more motivation for

students due to it’s immersive qualities.

8.8 Conclusion

Our goal was to get novice programmers immersed in a programming environment

that would lead to their ability to read, execute, understand, modify and create spells

(programs) with determination and a positive view of their ability. We believe we have

begun to show how CodeSpells is a viable solution for encouraging novice programmers to

invest in their programming as they do with video games.
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We plan to run a larger study where we can compare how novice programmers

engage with CodeSpells and Media Computation (which is used in our institutions CS1

course), as well as other environments such as Alice and Scratch that also offer immersive

qualities. We plan to improve on our API as we measure learning gains in our future studies,

but posit that the level of authenticity versus power, along with the metaphor of magic,

engages novice programmers such that they can feel positive about their struggles when

learning their first industry-standard language.

Our contributions are two-fold: We have presented here an API and environment

that has:

• Allowed novice programmers to read, execute, understand, modify and write CS1-

level Java programs within a 45- minute period.

• Immersed novice programmers into their programming environment so much so that

they have developed a determination to solve problems and a positive outlook on

programming challenges.
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Chapter 9

Designing Quests to Teach Program-
ming Skills

Chapters 7 and 8 focus on the enculturation of children through CodeSpells. In this

chapter we evaluate the programming tasks required of the students during gameplay and

contribute best practices in engaging children in the development of programming skills.

9.1 The Role of Quests in Serious Games

In serious games, quests are often employed to reduce complications. Here, quests

are defined as the requirement posed to the player to engage in some set of activities

leading to some learning goal. CodeSpells brings the quests to the forefront of the game,

making them the primary motivating factor and rewarding students with badges as they

complete each quest. CodeSpells is a fairly new, novice programming environment that has

been shown to engage students learning to program by providing an accessible metaphor:

magic [54]. CodeSpells was designed to teach basic Java programming concepts to novice

programmers without necessitating the presence of an expert programmer. Since one of the

most critical components of CodeSpells is a quest, this paper focuses on students’ interaction

with quests and the effects of these interactions on their learning.

Before conducting the study, an exploratory study looking at how students engaged

with the CodeSpells environment was run. Students’ engagement in the quests during

148
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gameplay was analyzed and it was found that students did not explore the code as expected.

As a result, an additional ten quests, requiring significant code edits, were added to the

environment. A second group of students’ game-play during the first six quests was then

observed. Although students had not yet been required to engage in the more challenging

quests, they were made aware of the more complex quests. It is clear that their behavior

in the game and their relationship with the spells/code was aligned with the intentions of

the game. These results are supported with quotations from students throughout game-play,

showing that students recognized that they were meant to understand, edit, and create spells.

This paper also presents lessons learned in quest design.

9.2 Related Work

Novice programming environments, such as Alice, Logo, and Scratch, have been

shown effective in teaching novice programmers [34, 89, 95]. The issue remains, however,

that these environments require some external curriculum to scaffold the students’ learning;

they lack a built-in structure to guide students through exploring a particular set of concepts.

Research has been done on effective assignments that engage the students in cognitive

apprenticeship, helping them understand that they need to write, test, modify, explore, and

code. Much like the quests in CodeSpells, the scaffolding provided by the Alice textbook

and exploratory homeworks guide students through exploring particular concepts [46, 56].

Additional contexts for textual based languages have also been explored. For exam-

ple, Media Computation for Python and Java has had huge success in reducing the barrier for

students in editing and creating code [68]. Such approaches to introducing computer science

try to make it more appealing by replacing traditional, contrived programming assignments

with more practical, engaging ones that require students to explore computing concepts

through media creation and manipulation. Providing students with a more practical and

engaging context has also been previously studied in regards to CodeSpells [55], though the
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specific benefits of the quests were not previously addressed, they will be addressed here.

Although programming contexts, assignments, and textbooks have been improving;

the equivalent is still new in serious games. Serious games have had success in STEM

education and, in particular, teaching computer science [71]. They have been found to

increase student motivation and more actively engage students in interacting with and

exploring concepts. The design of serious games is a very difficult challenge [84], as it

requires good game design, to ensure engagement, and the development of an effective

learning environment.

This paper focuses on the issue of the in-game quest design to provide scaffolding and

expectations to the students. Gidget is another serious game that aims to teach programming

and has also begun to explore this space. Recently, Lee et. al. have published work

on in-game assessments and how they affect students [89]. Lee describes two versions

of Gidget, one where students were assessed throughout gameplay and one where they

were not. Surprisingly, students who were given the version with in-game assessments

were able to solve more quests/levels in the same amount of time as students who did

not receive the assessments. The assessments are similar to the additional of ten quests

presented in this paper, which positively affect students’ engagement in complex coding

tasks farther than the “critical qualities of non-institutional computer science learning

spaces,” specifically, learner-structured activities, exploration /creativity, programming as

empowerment, difficulty stopping, and “countless” hours [54].

9.3 Exploratory Learning Study

Twenty-four students in a local 4th grade classroom were observed playing Code-

Spells for 4 hours to explore how students engage in the quests. Of the twenty-four students,

eleven were female and thirteen male, all aged 9 and 10. Students were presented with

a talk about why learning computer science is important, were given a brief interactive
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group demonstration introducing game mechanics and features of CodeSpells, and then

began playing CodeSpells in assigned pairs. Note that during the demonstration of the

game mechanics, students were introduced to the SpellBook (which contains starter spells),

how to read it, copy spells from it, and cast the spells that they copied. Students were also

shown the procedure for opening and modifying a spell. These actions are required for

engaging with the code. Students then began playing CodeSpells in self-selected groups of

1-3 students. They had access to a tutor throughout game-play if they had questions, but the

tutor limited responses to encouragements to explore the code and its effects.

9.4 CodeSpells Base Quests

CodeSpells originally had six quests where students had to complete some specific

task for gnomes in the 3D world. Quests were the main source of scaffolding for students

and encouraged code exploration after completion. Each quest introduced a working spell,

provided a scenario for testing that spell, and suggested modifications to the spell. Quests

are described in Table 9.1.

9.5 Quest Engagement Analysis

The six initial quests presented in Table 9.1 were designed to familiarize students

with the relationship between code and its effects in the 3D world. Students were meant

to engage in a quest (by talking to a gnome), go through the SpellBook reading the spells

and accompanying descriptions, choose the appropriate spell, and try it in the world. After

completing the quests students were highly encouraged to create their own spells. Although

this was our intention, students did not engage with the spells as we expected them to:

they did not appear to engage with the code after completing a quest. We attempted to

rectify this issue with additional quests that were more open-ended and required more

code-modification.
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Table 9.1. Description of the Initial 6 Quests

Picking Up
Stuff

This was a very simple quest that only required clicking on a crate
in the world and transferring it to the inventory. This quest did not
involve any spells.

Cross
River

This quest required the use of the Teleportation spell to teleport
oneself across the river. It did not require any spell modifications,
but suggested that the student try teleporting other objects as well.

New
Heights

This quest required the levitation of a crate to the top of a building.
The original spell only levitated the crate 10% of the necessary
height. Students should change the conditional in a while from 10
to 100:

while(counter < 10) --> while(counter < 100)

Out of
Reach

Students were expected to fly around the rooftops to collect floating
bread. They cast the Flight spell on the crate used in New Heights.
Students are encouraged to modify the code to fly faster. Students
should change a parameter from 0.2 to 0.4:

target.move(Direction.forward(), 0.2); -->

target.move(Direction.forward(), 0.4);

Firefighter This quest expected students to summon the rain cloud across the
world to a flaming crate. Students were then encouraged to try to
summon other objects to themselves.

Light Fire This quest required students to set two crates on fire using the
Flame spell. They were then asked to modify the spell to extinguish
the fires. Students should change a Boolean parameter from true
to false:

target.onFire(true); --> target.onFire(false);
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9.6 Quest Modification Study

9.6.1 The Study Setup

Based on what we observed in the exploratory study, we ran a second study during

a 7-day summer program. Eight female and eight male students aged 8-12 participated.

Two of the students reported having minor Scratch programming experience and two other

students reported having watched a parent program. The remaining twelve students had

no prior exposure to programming. Students were given the chance to play CodeSpells for

seven sessions, totaling approximately 10 hours. As with the exploratory study, students

were given an introductory talk about why learning computer science is important and the

game mechanics of CodeSpells. Students then began playing CodeSpells in self-selected

groups of 1-3 students. Discussion and collaboration within and among groups was both

encouraged and observed. Students had access to a tutor throughout gameplay, though the

tutor limited responses to help deciphering syntax errors and encouragement to explore the

code and its effects.

9.6.2 New Quests

In addition to the quests presented in Table 9.1, ten new quests were added, all of

which required code editing. Two of the quests were automatically checked by the in-game

program analysis. The remaining eight were manually checked during game-play due to

their complicated nature. Each of these new quests required students to modify or create

spells.

9.7 Quest Engagement Data Analysis

Interesting patterns in students’ engagement with the code required to complete

quests were found in this study. The students focused their problem solving strategies

around the code, specifically their ability to modify and create spells. This was evident in
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Table 9.2. Additional 10 complex quests

Unlevitate In this quest, students were asked to lower 3 crates to the ground.
As in the New Heights quest, students were expected to modify
the Levitation spell to loop 100 versus 10 times and change from
up to down.

Summon
Object

Students were expected to modify the Summoning spell to summon
any target object to them. The modified Summon spell is the
following:

Enchanted target = getTarget();

Enchanted me = getByName(‘‘Me");

while(target.distanceTo(me) > 5) {

Direction to_me = Direction.between(target,me);

target.move(to_me, 5);

}

Square
Dance

Students were expected to modify the Sentry spell so that it would
move North - West - East - South, instead of simply West and East.
The correct spell is the following:

Enchanted target = getTarget();

while(true) {

moveNorth(target);

moveEast(target);

moveSouth(target);

moveWest(target);

}

With four helped methods structured as follows:

public void moveEast(Enchanted target) {

for(int i = 0; i <100; i++) {

target.move(Direction.east(), 0.2);

}

}

The three other methods replaced east with north, south or west.

My Dance This quest allowed students to create their own spell for moving a
crate using Square Dance as a model.
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Table 9.2. (Cont’d) Additional 10 complex quests

Massive
Levitate

This quest required students to levitate all objects within a specific
area. To do this, students created an area by dropping a magical
staff from the inventory to the world. They then modified the
Massive Fire spell to levitate all objects in the area instead of
catching them on fire. The Massive Fire spell:

Enchanted area = getByName(‘‘Area 0");

EnchantedList list = area.findWithin();

area.grow(10);

for(Enchanted target : list)

target.move(Direction.up(), 5);

Massive
Dance

This quest combines the previous two quests. Students replace
the bold line in Massive Levitate with their calls to their creative
dance. They also copy over their helper methods into the Massive
Dance class.

Follow the
Leader

Students were expected to modify the Summon spell for this quest.
Students added a while(true) around the conditional while of their
Summon Object spell.

Portal In this quest, students were expected to change the Teleportation
spell to teleport anything in one area to another area. The Portal
spell is as follows:

Enchanted area1 = getByName(‘‘Area 1");

Enchanted area2 = getByName(‘‘Area 2");

Location temp = area1.getLocation();

Location dest = temp.adjust(Direction.up(), 10);

while(true) {

EnchantedList list = area2.findWithin();

for(Enchanted target : list)

target.setLocation(dest);

}
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Table 9.2. (Cont’d) Additional 10 complex quests

Umbrella In this quest, students were expected to change the Follow the
Leader spell so that it would have a specific crate always follow a
specific gnome named Alex. The solution:

Enchanted target = getTarget();

Enchanted alex = getByName(‘‘Alex");

Location loc = alex.getLocation();

Location above = loc.adjust(Direction.up(), 5);

target.setLocation(above);

while(true){

loc = alex.getLocation();

above = loc.adjust(Direction.up(), 5);

target.setLocation(above);

}

the logs and video taken of student game-play. The students were made aware of the more

complex quests (described in Table 9.2) they would need to complete, but were required to

first complete the earlier quests.

After casting a spell, the hope was that students edited the spell they had just cast.

The intention was always for students to be able to cast a working spell to understand its

effects and then to experiment with changing that spell to do something slightly different,

either out of curiosity or for the sake of a quest. Per session, students edited a spell

approximately twelve times after casting. This means they edited about 18% of their spells.

Further analysis of these edits made it clear that students were fully engaged with their code.

Students made 1054 edits on average, adding 610 characters and removing 444 characters

each session. In reviewing the video data collected on students while editing spells, students

were making complex edits: copying lines of code, combining spells, and creating spells

rather than simply change parameters. If students modified a working spell and received

a syntax error, they looked through correct code in their SpellBook or asked help from a

tutor to resolve the error, rather than copying a new working spell and starting over. This



www.manaraa.com

157

behavior is the intention of the additional ten complex quests.

9.7.1 Analyzing Student Speech Acts

Audio and video data collected while students were playing CodeSpells was analyzed

to improve the understanding of student experiences. This paper focuses on the analysis of

the 80-minute session in which students completed the first six quests described in Table 1.

Based on speech acts of the students during game play, it seemed that they were approaching

quests knowing that changing and understanding spells is the expectation.

For example, one pair attempted to complete the Out of Reach quest: “I just want

to read the spells.” The pair commenced reading the page on Flight in the SpellBook for

at least 30 seconds. They then opened the Flight spell in the IDE, and said, “This while

means repeat over and over and over.” They then made a code edit. Another student also

read the Flight spell and prepared for the changes she would make once she copied it out of

the SpellBook. While reading Flight in the SpellBook (without having used it yet), “I’m

going to fly 1000 feet high. I figured out how.” While saying this, she highlighted the value

in the levitation portion of the spell that could be changed to make this happen.

One student wanted to make his levitate spell levitate down at a faster rate. “Oh my

god! I know how to make levitate go faster...” He then changes 0.1 to 0.2, then 0.4, then 0.9

“I’m doing 0.9 now. Whoa, 0.9 is awesome! It goes down a lot.” Another student didn’t wait

to be presented with undefined spells, and instead began experimenting with spells of his

own creation. One student even got frustrated when he saw that another student was earning

badges too quickly. Talking about spells, he said, “You actually should use it. Don’t just

like do it, use it. Have fun! It’s a video game!” He then proceeds to copy a spell out of the

SpellBook, test it and modify it to do something slightly different.
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9.8 Lessons Learned

Though one benefit of novice environments and serious games is that the students can

perform complex actions with relatively less effort, based on these results, the expectation for

more effort needs to be made clear from the beginning. Lowering the barrier for exploring

code is critical, but students need to recognize that they need to understand the code they

are using. We therefore provide three key lessons to consider when creating in-game quests

for serious games:

1. Providing working code that can be used to build on (starter code) or build from

(requiring the students to write something similar) allows students to test the code and

understand its effect on the environment.

2. Providing the expectation that they will have to edit code from the beginning is

essential. This could be a reward system that rewards only code-edits and not just

code-usage.

3. Providing a more directed exploration through the quests give them a sense of the

complexity ordering. This allows them to choose the challenge they want to overcome.

9.9 Conclusion

Based on a study that shows students engagement with quests within CodeSpells,

three key lessons to consider when creating in-game quests have been presented. To develop

these guidelines, students were first observed during an exploratory study to understand

the issues with the initial quests within CodeSpells. Additional quests that required more

complex code edits were added and the expectation for the students to be able to complete

them was given. A second set of students was then observed and their game-play was

analyzed. It was observed that the expectation for significant code changes encouraged
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students to engage with code in a more suitable way. Future work will explore the likelihood

of similar results in the absence of tutors.
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Chapter 10

Bridging Educational Language Fea-
tures: Industry-Standard Languages
Can Support Enculturation and Skills
Development

This chapter evaluates the changes made to CodeSpells in both encultration and skills

development for children playing the game. We introduce the new features of the CodeSpells

software and the additional CodeSpells curriculum that was created to take advantage of

best practices of educational programming languages while teaching an industry-standard

language. These features and curriculum were tested during an 8-week study where 55

9-10 year old students played CodeSpells 1-hour per week and were also required to work

through the guided workbook each day.

Section 10.1 of this paper will give a background on CodeSpells and previous

research done on other programming languages and environments that led to the changes

made for this study. Section 10.2 describes the motivation for the feature changes to the

CodeSpells software. Section 10.3 describes the curriculum changes, including the guided

workbook. Section 10.4 describes the study. Sections 10.5 and 10.6 describes the results of

the study; the students ability to write Java code on paper. Section 10.7 discusses how these

results might impact the computer science education research community.

160
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10.1 Previous Work

Significant background research on the importance of CodeSpells has been presented

in previous work that will be described here [55, 54, 57]. This paper will focus on the

changes in CodeSpells, and will introduce the concept of Epistemic Frames, which will be

described in Section 10.2.

10.1.1 Motivation Behind CodeSpells

CodeSpells was designed to engage novice students in a more authentic computer

science educational experience by using a textual programming language while attempt-

ing to recreate a non-formal learning environment for novice programmers [55]. Thirty

“origin stories” were gathered and analyzed to find a common thread of what sparked a

life-long interest in computer science. Specifically, 5 qualities were continuously found:

Learner-Structured Activities, Exploration/Creativity/Play, Programming as Empowerment,

Difficulty Stopping, and spending “Countless” Hours practicing.

Study

A very basic version of CodeSpells was then tested on 40 middle-school girls in

a 1-hour session. The girls were presented with a forest that had three crates spread out

amongst the trees. They were also given an inventory with three unique spells; moving

side to side, moving up and down and teleporting. They were encouraged to cast the three

spells they were given onto the crates, to modify the spells, and were explicitly told to “do

interesting things.” After one hour of game-play, they were broken up into groups of 12-15

students and participated in a focus group style interview.

Results

In such a short study where participants are unable to play outside of the lab envi-

ronment it is impossible to determine if the girls experienced difficulty stopping or would
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spend “countless” hours playing, but it was observed that they engaged in learner-structure

activities and explored the environment in similar ways that were described by the expert

programmers in the origin stories. One way in which empowerment was observed was their

persistence in solving the programming problems. When confronted with a syntactic or

semantic error, they would tell a facilitator that they “knew it could be done” and that they

“just needed to figure out how”. In the focus group interview they described programming as

a “way to accomplish anything”.

Contributions

From the two studies presented in [55], it was clear that if the proof-of-concept

was pursued, it might yield a way to introduce textual-based languages to younger students.

More broadly speaking, it was found that engaging novices in the 5 qualities of life-long

programmers is beneficial and can be done outside of the CodeSpells environment.

10.1.2 Designing a Game

After the findings in [55], a game was designed within the CodeSpells environment

[54]. This game involved three specific aspects meant to not only engage the students in

programming concepts, but begin to immerse them in the study of computer science: 1. The

metaphor of magic, 2. An API that encouraged embodiment, and 3. A way to reference

objects to encourage immersive behavior.

Magical Metaphor

The magical metaphor was partly inspired by Brooks’ description of a programmer.

He states “The magic of myth and legend has come true in our time. One types the correct

incantation on a keyboard, and a display screen comes to life, showing things that never

were nor could be” [18]. This metaphor is often used with computer programmers, but

can be applied to learning since popular examples of magic show the effort, practice, and
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mentorship it takes to learn magic (e.g. Harry Potter). CodeSpells adopts the metaphor

of learnable magic. In the game version of CodeSpells, students were given an entire

Spellbook; rather than only given three spells (programs). Students were also provided with

non-player characters whose role was to encourage the exploration of the spells.

API

The API was designed to be similar to a Java applet with “cast()” instead of “run()”.

Students can cast spells on any object, but depending on the spell and the properties of the

object different effects might occur. For example, attempting to the run code to catch an

object on fire on a non-flammable object would yield no effect.

The complexity of the API was challenging. Previous novice programming APIs

such as Media Computation [68], Alice [46] and Scratch [101] provided a theme: for

actions and effects that are simple to do in the real world (e.g. moving objects), the API

should be a simple line of code (e.g. target.move() ), whereas complex actions (e.g. move

multiple objects at once) should be more complex (e.g. requiring understanding of lists and

iteration through lists).

Referencing Objects

Finally, an interesting question arose: how can students engage with entities in the

environment easily? The referencing a single object was already established:

Enchanted target = getTarget();

To immerse the students even more, additional entity reference was added such that students

could reference objects by name:

Enchanted myself = getByName(‘‘Me");

As described above, having the ability to affect multiple objects with one spell is

desired by students, yet difficult to do in a 3D environment. The solution was to introduce
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Figure 10.1. Example of an area in the environment.

“Areas” (see Figure 10.1). An area could be placed in the world and the objects contained

within an area are put into a list, and can then be iterated through:

Enchanted area = getByName(‘‘Area1");

EnchantedList rocks = area.getWithin();

for(Enchanted rock : rocks){

rock.onFire(true);

}

The goal of these changes was to better immerse the students in their learning

experience.

Study and Results

To study the changes made in this version of CodeSpells, 17 participants from

varying ages and backgrounds were asked to play CodeSpells for approximately 1-hour.

Participants were asked to complete all quests and were given as much time as they wanted.

Through background questionnaire surveys, observational notes, and exit interviews, it was

discovered that participants were able to easily use and modify the spells. Students were

also immersed into the environment.
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Participants described physical immersion by referencing themselves; “I was trying

to levitate the rock that I was standing on, but then I accidentally clicked on it and I fell

off”. Lee and Ko describe a similar phenomena with their programming feedback tool

Gidget [88]. What Lee and Ko found was the if their tool was more personified, it increased

students motivation to learn and therefore understand. Participants described their values

immersion by describing their experiences; “[I] never gave up – because it’s a video game!”.

Participants seemed to be motivated to learn in ways that aren’t typically seen with traditional

learning environments.

Contributions

This particular study showed that participants could engage with Java code regard-

less of age or prior programming experience. It also showed that the gamified approach,

the immersive API, and interactions with the environment encouraged participants to be

motivated and potentially learn more. What is still missing from this work is an evaluation

of the learning activities (see Section 10.1.3) and an evaluation of what is actually being

learned, which is the focus of this paper.

10.1.3 How to Properly Design Quests

CodeSpells was shown to be playable and to engage students in Java programming,

and in [57] the design of CodeSpells quests, as well as a set of lessons learned on quests for

all serious games were explored.

Study

There were two phases to the study in [57]. First, the basic quests that were designed

during the previous studies were explored. Twenty-four 4th grade students were asked to

play CodeSpells for 4 hours over the course of 4 weeks. There was a total of 6 quests that

they were asked to complete, two of which are described in Table 10.1.
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Table 10.1. Description of 2 Quests

Quest Description

Cross
River

This quest required the use of the Teleportation spell to teleport oneself
across the river. It did not require any spell modifications, but suggested
that the student try teleporting to other objects as well.

New
Heights

This quest required the levitation of a crate to the top of a building.
The original spell only levitated the crate 10% of the necessary height.
Students should change the conditional in a while from 10 to 100:

while(counter < 10)

--> while(counter < 100)

It was expected that students would engage in a quest (by starting a conversation

with a gnome), go through the Spellbook reading the spells and descriptions, choose the

appropriate spell, try it and then possibly modify it. What was actually observed was that

students rarely read the descriptions and rarely modified the spells during or after the quest.

In fact, when students were prompted to modify the quests, they seemed resistant.

A second study was then run during a 7-day summer program. Sixteen students

between the ages of 8 and 12 little to no programming experience played CodeSpells for a

total of 10 hours over 7 days. The students were introduced to an additional 10 complex

quests described in [57]. Though the students still had to begin with the original quests,

they were aware that the more engaging quests were something that they would have to

eventually accomplish. The 10 additional quests required significantly more code edits than

the first 6.

Results

After including the additional 10 complex quests to CodeSpells, students were

observed to make complex code edits from the beginning of their game play. Debugging

habits presented another difference between the students: the second group would debug

while the first group would often start over.
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What was perhaps most intriguing about this second study was the analysis of the

speech acts. Students in the second group would say: “Oh my god! I know how to make

levitate go faster...” The student then changed 0.1 to 0.2, then 0.4, then 0.9. “I’m doing 0.9

now. Whoa, 0.9 is awesome! It goes down a lot.” The students even maintained the value

immersion described in section 2.2.4. This student was describing to his classmates how

they should interact with spells, “You actually should use it. Don’t just like do it, use it.

Have fun! It’s a video game!”

Contributions

The key take-aways that should be considered when building educational activities,

particularly in serious games were:

• Providing starter code that can be used to build off of (allows students to test under-

stand the code and its effect on the environment.

• Providing the expectation that they will have to edit code from the beginning is

essential.

• Providing a more directed exploration through the quests give them a sense of the

complexity ordering.

The lessons learned from this study can be applied to a variety of learning environments,

not just serious games. It also reinforced themes seen in the previous studies done on

CodeSpells, such as values immersion.

10.2 CodeSpells: An Epistemic Game?

The research that was done in [55], [54], and [57] has led to improvements of

CodeSpells in engagement, playability, motivation, and immersion/embodiment. Each of

these studies touched on a piece of what CodeSpells was designed to do: teach students

how to be a computer scientist, not just how to program.
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It was clear at this point, that CodeSpells was designed to be an Epistemic Game.

Epistemic Games, as described by Shaffer, are games in which students use experiences in

video games, computer games, and other interactive learning environments to help them

deal more effectively with situations outside of the original context of learning; mechanism

for what is sometimes referred to as transfer [134].

Though CodeSpells requires that the students play the role of a wizard, rather than a

computer scientist, it could be argued that if the students are gaining the skills, knowledge,

values, epistemology and identity of a computer scientist, through playing CodeSpells, it

could therefore be classified as an epistemic game for computer science. Based on the

evidence thus far in CodeSpells research, it has been shown that students have begun to

develop the epistemic frame of a computer scientists through game-play. However, it must

be pointed out that there is no proof that the students will develop the epistemic frame of an

expert programmer, but rather a novice programmer.

If CodeSpells can, on it’s own, help students become enculturated into the community

of computer scientists, then it can be a powerful software and experience that can be shared

amongst millions. As seen in [55], the beginning of the journey to become a computer

scientist is an important one, therefore to carefully craft that beginning and make it accessible

is a worthy goal. With the lack of computer science teachers at K-16 levels, it is the goal

of CodeSpells to provide a rich experience of computer science education to students

who may not have access to an educator. Specifically, this paper introduces a study

that shows that students can learn basic computer science topics, through demonstrating

their knowledge on a final written exam. It also introduces a changes in the software and

curriculum, based on the previous studies and research described above.
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10.3 Software/Curriculum Changes

There were three major changes to the CodeSpells software and curriculum that will

be highlighted in this paper:

• Spellbook: The Spellbook should focus on micro-design patterns, not spells.

• Quests: Quests should involve more programming from the beginning.

• Physical Spellbook: A physical Spellbook should be introduced to get students

familiar with topics outside of the game.

10.3.1 Spellbook

The Spellbook was changed in two major ways; students could only copy out the

first (blank) spell (see Figure 10.2), and each page in the Spellbook introduced a basic

micro-design pattern. In this paper, micro-design patterns are defined as basic programming

structures that are evident in nearly all programming languages and often taught in a CS0 or

CS1 course. Examples (non-exhaustive) of such micro-design patterns are: If-Statements,

For-Loops, Method Calls, or Parameter Passing.

By focusing the Spellbook on micro-design patterns instead of spells, students will

be required to understand the pages more, since they won’t be able to just copy the spell out

and test it. This attentiveness has always been a goal, but students were never interested in

reading the Spellbook. It is clear that just changing what is written in the Spellbook won’t

automatically make students read the Spellbook, but at least now if they read it is has a

useful piece of information, rather than a description of a spell.

Another way that students were required to be more attentive to the Spellbook is

by not allowing students to copy any pre-written spells out of the Spellbook. Figures 10.2

through 10.5 show the first four pages of the Spellbook. The first page is the only page they

are allowed to copy out directly. This means that from the very beginning the students must
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Figure 10.2. Page 1 is the only spell that the students can copy out of the Spellbook.

Figure 10.3. Page 2 describes how students will interact with objects.

Figure 10.4. Page 3 describes method calls.
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Figure 10.5. Page 4 holds the API that is available to the students.

Figure 10.6. Page 5 introduces the concept of parameters.
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Figure 10.7. Students can still access pages of the Spellbook while working in the IDE.

write all of their spells, even the simplest ones. The next two pages introduce the most basic

micro-design patterns that the students can use: naming an object and calling a method on

that object. Finally, the fourth page lists all the methods that are available to the students to

use.

The layout of the Spellbook is much more representative of resources that expert

programmers would use; essentially an API with some very simple examples. When the

students go back into the environment, they are still able to access the Spellbook through

the IDE, as seen in Figure 10.7.

Additional Spellbook pages are unlocked once the student unlocks certain badges.

This helps scaffold the introduction of micro-design patterns. For example, the next page

that gets introduced can be seen in Figure 10.6 . By introducing more complex concepts

after the students have had a chance to experiment with the basic spell, the new Spellbook is

also following the Inventing to Prepare for Learning (IPL) sequence [130].
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Figure 10.8. Quest 1 and 2 require the students to collect the piece of bread by casting a
spell on the crate to make it move and hit each piece of bread.

10.3.2 Quests

All of the quests were completely re-written for this study. The environment was

setup such that the students were not able to leave a particular area until they had accom-

plished certain quests. This is similar to how other video games are designed, and would

allow for a scaffolded learning experience. It also linked well with the way the Spellbook

was scaffolded. Showing students that they needed to earn the right to use more complex

magic and to explore the rest of the land.

Area 1

In area 1 students were introduced to the basic method calling (as shown in Figures

10.2 through 10.5). The task was to write a spell that could be cast on the crate to make it

collect the one piece of bread. This should be a simple-enough task, considering the third

page of the Spellbook contained the exact code the students would need to write (see Figure

10.4).

Once the students wrote and cast this spell, they would be faced with a new challenge;
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see Figure 10.8. Though the students had everything they needed on page 4 of the Spellbook

(see Figure 10.5), this still posed a challenge because up until now, the concept of writing

one spell to do multiple actions wasn’t something they had encountered. It is also tricky

because the students also had to understand the need to reset the crate for testing purposes.

If they wrote code that didn’t work the first time, they would have to write code that would

reset the create. Therefore the best solution might be:

Enchanted target = getTarget();

target.moveSouth();

target.moveUp();

target.moveUp();

target.moveEast();

target.moveDown();

target.moveDown();

target.moveNorth();

target.moveWest();

Once the students demonstrated their ability to write a spell that called multiple

methods on one object, the next two pages in the Spellbook unlocked (see Figures 10.6). At

this point the students hardly had to make any changes:

Enchanted target = getTarget();

target.moveSouth();

target.moveUp(2);

target.moveEast();

target.moveDown(2);

target.moveNorth();

target.moveWest();
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The first area introduced the students to Object Naming, Method Calling, Basic

Algorithms, Parameter Passing, and Basic Refactoring. Even though the students are not

completely aware of all of these computer science concepts, and even though they haven’t

begun to master them yet, they have been introduced to them and the language of the game

has begun to enculturate them.

At this point it could be said that the change in the quests has carved out a piece of

the epistemic frame of a computer scientist. The students demonstrated (or at the very least

were exposed to):

• Skills: In their ability to write code.

• Knowledge: In their ability to write a spell of their own design.

• Values: In the need to refactor when it is evident that there is a more efficient way.

• Identity: In their act of writing the spell from scratch.

• Epistemology: In the reason behind using parameters.

This does not prove that they are forming an epistemic frame of a computer scientist, but it

allows for the possibility of such. The contributing factor of CodeSpells is that it represents

an entry-point of the field for a majority of people, not that it helps novices become computer

scientists all within the game.

10.3.3 Physical Spellbook

The final change to CodeSpells that was made for this study was the addition of

a physical Spellbook. What was observed in previous CodeSpells studies is that students

never wanted to take the time to read the Spellbook. The generally fast-paced nature of

games might, therefore, have something to do with the students’ unlikelihood to spend the

time reading while playing. It has previously been observed, however, that gamers who
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Figure 10.9. The first exercise is a code-tracing problem.

Figure 10.10. The second exercise is a code-tracing problem.

Figure 10.11. The third exercise is a code-writing problem.
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play complex games often do study the game, with a combination of game play and outside

resources [60].

Therefore, a physical Spellbook was provided to each student. Activities for the

students to complete on paper were also provided with the Spellbook. For example, before

the students were introduced to the additional two pages of the Spellbook that introduced

parameters, they were asked to engage in three exercises; shown in Figures 10.9 - 10.11. The

goal of these problems was to encourage the students to understand the spells that they were

writing outside of the exact context for which they were writing them (i.e. applying them to

a new problem). Similarly to the changes in quests, this does not necessarily follow that the

students will be able to apply this knowledge to any problem placed in front of them, but if

they have the ability to transfer the knowledge to at least one other problem it demonstrates

for them the importance of understanding the concept, and not just memorizing the one

solution.

10.4 Study

10.4.1 Participants

Two different schools agreed to participate in the study, one was an affluent private

school and the other was a bilingual public school. Each school allowed the research team

to attend their 4th grade classroom once a week for a total of 10 weeks. There was a total

of 55 4th grade students (ages 9-10), 24 were from the private school, 31 were from the

public school. Each of the students were encouraged to participate by their teachers, but no

student was required to participate in any part of the study. If they chose to not participate,

the teacher provided them with other educational games to play (such as SumDog [146]).

In the end, a total of 50 students participated for the entire duration of the study.

Each of the participants were paired up based on their results from the background

survey they answered on the first day and with input from their teachers. This allowed each
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pair to be as closely matched on experience and confidence.

10.4.2 Methodology

At the beginning of the study, the students were asked to fill out a 15-minute online

background survey. In this survey they were asked about their experience with computers,

video games and programming. They were also asked a series of growth mindset questions

relating to math and programming. Finally, they were asked questions relating to identity

and programming (such as “Do you think you are a programmer”).

After the students filled out the background survey, a class-wide discussion was led

on what programming is and why it might be interesting for them to learn. The Code.org

video was shown [25] and students were encouraged to describe why programming is

important for everyone to learn.

Each week, the research team would arrive and the students would pair up with their

partners. They would begin the game-play in a traditional pair-programming fashion [5].

Every 5 minutes they were asked to switch driver-navigator roles. The students were able

to proceed at their own pace. When a pair reached a particular milestone in the game, they

were then asked to work on their physical Spellbook. Whenever working in the physical

Spellbook, they had to do so quietly and without help from their partner. This was meant to

account for a pair where one partner was doing all of the coding.

Throughout the 8-weeks, the CodeSpells research team would help the students when

they needed assistance. The CodeSpells research team, however, consisted predominately

of psychologists with no programming experience. Therefore the type of help offered to

the students was more encouragement, rather than a tutorial on the intricacies of computer

science or programming.

At times, throughout the 10-weeks, if the majority of the students had a question

relating to a computing concept, a short explanation was given out loud to the entire class.

This was then recorded to incorporate into the Spellbook in future iterations.
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On the final day, the students were asked to complete a final written exam individually.

In this exam, students were asked to trace and write code. They were not provided the

Spellbook for reference and had to complete the exam with no help from the research team.

Once they completed the exam, they were asked to fill out an exit questionnaire that asked

the same growth mindset, identity and perception questions as the background questionnaire.

10.5 Data Collection

10.5.1 Final Written Exam

To evaluate the students skills and knowledge of computer science, they were asked

to complete a final, written exam. This exam was designed based on other CS0 level exams

used in traditional undergraduate levels [101, 45].

10.5.2 Growth Mindset Questionnaire

Students were also given a Growth Mindset [49] questionnaire at the beginning,

middle and end of the study where they were asked to answer eight questions about the

fixedness of math and programming intelligence. Students were asked to answer on a scale

of 1 - 4 (Disagree, Somewhat Disagree, Somewhat Agree, Agree).

10.6 Results

This study was designed to not only teach the students how to program, but also

what it means to be a computer scientist. CodeSpells was designed to enculturate students,

therefore, the pre- and post-surveys and the final written exam were designed to better

understand students change in their Epistemic Frame.
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Figure 10.12. Average score of each question on the final exam.

10.6.1 Skills, Knowledge and Epistemology

The final written exam yields the first results to demonstrate student learning using

CodeSpells. Figure 10.12 shows the average score for each question and the total score

across all students. The average total score for the exam was a 55%. Though this is a low

score, one should remember that the students taking this final exam are 9 and 10 years old

and have only been exposed to computer science and programming for a total of 8 hours.

Additionally, this exam predominately required the students to write Java code. It is also

important to look at the breakdown of scores across exam questions.

Questions 1 and 2

Question 1: Code Writing: Write a spell that collects 4 pieces of bread directly above the

crate.

Solution:

target.moveUp(4);
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Question 2: Code Writing: Write a spell that collects 8 pieced of bread in a horizontal

rectangle above the crate.

Solution:

target.moveUp(2);

target.moveEast(3);

target.moveDown();

target.moveWest(3);

Questions 1 and 2 of the exam required the students to essentially write variations of

programs that they had previously written within the CodeSpells environment. For example,

in the CodeSpells environment, students were asked to write a spell that would collect the

bread that was in a vertical rectangle (see Figure 10.8). On the exam, they were asked to

write a spell that would collect bread in a horizontal rectangle. This isn’t a major change,

therefore it is expected that the students should perform well on these questions. The

students scored, on average, 86% and 83% on the first two questions, respectively.

Question 3

Question 3: Code Writing: Write a spell where the target crate collects 4 pieces of bread

in a square above it and a second crate named “Crate” also collects 4 pieces of bread in a

square above it.

Solution:

Enchanted target = getTarget();

Enchanted crate = getByName(‘‘Crate");

target.moveUp();

target.moveEast();

target.moveDown();

target.moveWest();
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crate.moveUp();

crate.moveEast();

crate.moveDown();

crate.moveWest();

Question 3 asked the students to affect two objects in the world with only one spell. In this

question, students scored 55% on average, which is far lower than the first two questions.

We expect that this drop in score is because the students were introduced to the concept

of defining two objects in one program through their physical Spellbook, but never had to

write this code within the CodeSpells environment. This supports the idea that the physical

Spellbook is not enough to facilitate students’ learning of a concept, but that engaging with

it in the immersive environment is critical.

Questions 4 and 5

Question 4: Identify Terminology: Name the parts of the code provided (Value, Type and

Variable).

Enchanted target = getTarget();

Solution:

Enchanted is the Type, target is the Variable and getTarget() is the Value

Question 5: Identify Terminology: Circle the parameters in the following lines of code

(answers surrounded by - -).

Enchanted target = getTarget();

Enchanted crate = getByName(--‘‘Crate"--);

target.jump();

crate.jump(--3--);

target.moveUp(--4--);
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Questions 4 and 5 required to students to have an understanding of four specific

vocabulary words: Value, Type, Variable and Parameter. The students had no explicit

exercise, within CodeSpells or their physical Spellbook, to engage them in this topic. The

only way students would have been able to answer this question is through the implicit

learning that they engaged in while reading the Spellbook (digital and physical) and asking

questions. The students scored, on average, 54% and 61%, respectively, on these two

questions. This is a great result, because without having a specific lesson what a parameter

is, students were able to have a basic understanding through exposure alone.

Question 6

Question 6: Code Writing: Defining an existing method “jump(int num)”.

Solution:

public void jump(int num){

for(int i = 0; i < num; i++){

target.moveUp();

target.moveDown();

}

}

Question 6 had three topics that it was testing:

• Can the students decompose a method to smaller method calls (jump() to moveUp()

and moveDown()),

• Do the students understand how to define the use of a parameter (public void jump(int

num) to where would they put num in their method?), and

• Can the students recognize that to jump a certain number of time requires a For-Loop

(rather than moveUp(num) and moveDown(num).
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In retrospect, this question is too loaded to be one question that addresses all of these

concerns. However the students still, on average, scored 40% on this question. In looking at

the student responses, every student was able to recognize the need for moveUp/moveDown,

and 50% of the students gave a solution that was moveUp(num)/moveDown(num). Although

only 2 students recognized the need for a for-loop, the results of this question still show

that students were able to engage in the concept of defining a method. What is even more

impressive, is that the students were not exposed to this in the CodeSpells environment or in

the physical Spellbook at all.

Question 7

Question 7: Code Writing: Write 3 ways to get a target to move up 4 times.

Solution:

target.moveUp();

target.moveUp();

target.moveUp();

target.moveUp();

-----------------------------

target.moveUp(4);

-----------------------------

for(int i = 0; i < 4; i++){

target.moveUp();

}

Question 7 asked the students to produce three different ways of writing a program to have

the same effect in the environment. Every student was able to identify at least two ways:

call moveUp() four times, and call moveUp(4). 22% of the students came up with a third

solution that involved some clever use of parameters (for example, moveUp(2)/ moveUp(2)),
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while only 13% of the students recognized the opportunity to use a for-loop in this situation.

Since this question didn’t specifically ask students to only use parameters in one of their

solutions and the students never had to perform this type of activity during the study, it is

again impressive that nearly every student was able to come up correct solutions.

Questions 8 and 9

Question 8: Code Tracing: How much will the target move up.

Enchanted target = getTarget();

target.moveUp();

target.moveUp(2);

for(int i = 0l i < 4; i++){

target.moveUp(2);

}

target.moveUp();

Solution: 12

Question 9: Code Writing: Re-write the code from Question 8 such that you call moveUp()

once.

Solution:

Enchanted target = getTarget();

for(int i = 0l i < 12; i++){

target.moveUp();

}

Question 8 required the students to trace a complex program and determine how

many times a crate moved up. This is an activity that the students did have to do in the

physical Spellbook (see Figures 10.9 and 10.10). However, the students never had to trace
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code that involved a for-loop. Only 3 students were able to successfully trace the code,

yielding a very low average score for question 8. The positive side of this is that students

were able to write an alternative program to have the same effect as question 8 but by using

parameters or for-loops. 2 students wrote a solution that used a for-loop and 41% students

wrote a solution that used parameters in some way. Considering that, again, students were

never engaged in an activity that required them to write a alternative program that yields the

same effect, the performance on this question is decently high.

Question 10

Question 10 was open ended and allowed students to simply explore possibilities of

what they could do with programming. Students received one point if they wrote code or an

explanation and 2 points in they wrote both. The lower score on this question is due to the

fact that 11% of students only wrote code or an explanation and 24% of students decided

not to write anything at all.

10.6.2 Values and Identity

One of the most important goals of CodeSpells is to model computer science be-

haviors and values for students, as well as engage them such that they develop a similar

identity. As discussed earlier, it is not expected that after playing CodeSpells for ten weeks

the students will become computer scientists, but it is expected that they will have begun

their journey to becoming computer scientists. As in any 12-step program, the first step is to

identify who you are trying to be. In the pre- and post-surveys, students were asked “Do you

think you are a programmer?” and expected to answer with one of the following responses:

Yes., Yes, but I am still learning., Not yet, but I’m still learning., or No..

Figure 10.13 demonstrates the students’ self-identification as a programmer. It is

evident that the students identified more as a programmer during the post-survey. What

is also evident is that they recognized that they still had more to learn. In fact, only two
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Figure 10.13. Student’s responses to the question “Do you think you are a programmer” on
the pre- and post- surveys.

students claimed that they were programmers. Though the values of computer scientists

are not universally categorized, anecdotally a value of a computer scientist is that there is

always more to learn, particularly because the field is always changing.

Though further interviews were not conducted, it is possible that the students were

sharing the value of always learning that computer scientists have. It could be argued that

the students were lacking confidence in their abilities, which is why they responded Yes, but

I’m still learning. over Yes., but the change from pre- to post- survey in favor of Yes over

Not Yet would indicate a rise in confidence.

To better understand how the students defined a “programmer”, an open-ended

question was also asked on the pre- and post-surveys: “What kinds of people can be good

programmers? Why?”. All of the responses were 1 sentence long. The research team read

through all 108 responses from both surveys and identified five categories that responses fit

into:

• Anyone. “Everyone”, “Anybody can”, “Everyone can be good at programing because

if they want to do it they should”, “people that put effort into it”
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Figure 10.14. Student’s Open Ended Responses to the question “What kinds of people can
be good programmers? Why?”

• Smart People. “Smart and talented people”, “People with great minds and smartness”

• Math oriented people. “Good at math”, “people who are good with math and

numbers”

• People who work on computers. “People who have experience with computers”,

“People that play and love computers”

• I don’t know. “I DO NOT KNOW!”, “I don’t know”

What was found after the categorization of all of the student responses was that

the students thought that they had a better understanding of who programmers are; fewer

students responded to the question “What kinds of people can be good programmers?

Why?” with “I don’t know”. What is more exciting is that the students tended to respond

with “Anyone” in the post-survey, which again supports the claim that they also increased

confidence in their own abilities.

An interesting find was that students still believed that people who program should be

smart, but their reasoning behind it had changed. For example, in the pre-survey responses
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might be: “Smart people”, “Smart and talented people”, or “Smart intelligent people”,

whereas in the post-survey the answers categorized under “Smart people.” were described

programmers’ values: “Smart learners can be really good programmers because they will

pay attention and remember all the codes they need to be a programmer” or “Smart, patient

and wise people”. Similarly, the responses that were categorized as “Anyone.” went from

“Anyone” to “I think anyone could be a good programmer if they just never give up.”

Furthermore, the students’ mindsets did not change in fixedness, however, it does

show that the students tend towards a growth mindset. It could therefore be argued that

when students reply that “Smart people” can be good programmers, that they are referring

to anyone who dedicates the time to increasing their intelligence.

10.7 Contributions

What the results have shown is that with the combination of Game-Play and Spell-

book Activities, students were enculturated into the Epistemic Frame of novice computer

scientists. Though this work does not suggest that other curriculums or softwares could

do the same, it brings to light the importance of thinking of all five categories of epistemic

frames when designing such curriculum and software. Particularly, it is critical to think of

these five categories when designing software meant to be taught by a non-computer scien-

tists. Considering that the education space of the 21st Century is becoming less personalized

(with both large classrooms, online educational frameworks) it is important to consider how

current technological advances can still promote enculturation, not just information delivery.

The contributions of this work, in particular, are the changes made in both the

software and curriculum for CodeSpells. Not only is this a contribution for the work of

CodeSpells, but also a contribution to all programming learning environments.

It is not critical that each curriculum or software completely encultur-
ate the student, but it is critical, however, that each curriculum and soft-
ware attempt to show the students a slice of the field from all aspects of
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the epistemic frame.

10.8 Children Become Enculturated and Develop Pro-
gramming Skills While Playing CodeSpells

CodeSpells is a system that has been engaging young students in Java programming,

while increasing their confidence and beginning to enculturate them into the discipline of

computer science. In this paper we show that students are not only able to engage with Java,

but they are able to understand and write basic Java code after only 8 hours of playing the

game and working with the offline materials. This work shows potential for future iterations

of both CodeSpells, and the curricular framework that it presents. Specifically, this work

brings to light the importance of designing to enculturate novices, which can be guided by

the Epistemic Frames Framework.

10.9 Conclusion

CodeSpells is a system that has been engaging young students in Java programming,

while increasing their confidence and beginnign to enculturate them into the dicipline of

computer science. In this paper we show that students are not only able to engage with Java,

but they are able to understand and write basic Java code after only 8 hours of playing the

game and working with the offline materials. This work shows potential for future iterations

of both CodeSpells, and the curricular framework that it presents. Specifically, this work

brings to light the importance of designing to enculturate novices, which can be guided by

the Epistemic Frames Framework.
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Chapter 11

Discussion and Future Work

Thus far I have introduced two major interventions to integrating culture into com-

puter science learning experiences; one for in-person, undergraduate courses and one for

children. The question remains about the generalize-ability of these contributions. Based

on the results found in Chapters 3 through 6, Section 11.1 begins to measure the effects of

using Peer Instruction in a course that focuses around risk management. PI could be very

useful in this type of course because students have the opportunity to have instructor-led

discussions about risks and benefits, however creating multiple choice questions is more

difficult than in an introductory course. CodeSpells was studied and shown to teach children

programming skills and become enculturated in Chapters 7 through 10. In Section 11.2 I

generalize what was learned from these chapters using Epistemic Frames, but applied to

computer science learning environments.

11.1 A Discussion on Adopting Peer Instruction in a
Course Focused on Risk Management

Peer Instruction (PI) has been shown to significantly improve student experiences

and learning in a range of computer science courses from introductory courses to more

advanced topics such as theory of computation and computer architecture. But there has

not yet been research on adopting PI in a computer science course that does not teach a

192
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specific language, set of algorithms, or mathematical concept. This paper introduces an

upper division software engineering course that adopted and modified PI to address risk

management.

First the course and the modifications to PI are discussed, then a call to the community

is made to discuss how PI might be adopted to courses where pre-defined clicker responses

may not address specific concerns of the course. The results are discussed from a student

survey where students were asked to reflect on their experiences with this modified PI

approach compared to other courses where they did and did not use PI. Finally, a preliminary

comparison is made between the questions presented in this course with other PI courses

and the student reception of this course is compared with previous versions of the course.

11.1.1 Related Work

Peer Instruction was developed by Erik Mazur in physics education in 1991 [39]

and has been shown to improve student performance in computing courses for more than a

decade [45]. PI is a pedagogy that requires students to engage in a series of multiple-choice

questions during lecture based on pre-lecture reading by answering them individually, and

then discussing their answers and coming to a consensus within their group. The instructor

then leads a class-wide discussion on the topic. Clicker questions are interspersed with

mini-lectures where the instructor is able to build more knowledge around a specific topic

now that the student has primed their mind to think about what the teacher is saying, and to

use the new information to modify their model of understanding.

Recently, PI has been researched in a large variety of course topics, class sizes and

institutions [116]. It has proven to be successful in student engagement, learning and efficacy

in large and small computing courses in a range of liberal arts and research institutions. In

2011, Porter et al. show that PI group discussions improve student understanding of concepts

in architecture and theory of computation courses [118]. In 2013, Simon et al. show that

there is a significant improvement in student performance in a CS0 PI course compared to a
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standard instruction course of the same professor, institution and term [139]. Porter et al.

has also shown that PI, along with Pair Programming and Media Computation, contributed

to a nearly 1/3 increase in retention of computer science majors and a significant reduction

of fail rates in four different computing courses (CS1, CS1.5, architecture, and theory of

computation) compared to the previous 10 years of each course (16 of those instances using

PI) [119].

Though all of these results are encouraging and exciting, there has not yet been an

evaluation of PI in a course focused on a topic without a single best answer, such as risk

mitigation. Since PI has been shown to work in large classes, one approach to such a course

would be to change the kinds of questions that should be asked and therefore what the

students should be discussing during class. In 2012, Cutts et al. presented the Abstraction

Transition Taxonomy, which is a classification system for identifying the “kinds of knowing

and practices we engage our students in as we seek to apprentice them” [45]. Particularly

interesting, but not extensively studied in this work, were the rationale questions. These are

questions where students are asked to choose an answer that provides the best explanation

for why it is correct. Of the seven final exams classified, rationale questions never exceeded

15% of the questions per exam. [45] discusses CS0, CS1 and CS2 courses but lacks in

exploration of rationale questions in upper division courses, such as software engineering.

Although software engineering courses have not yet been shown to adopt Peer

Instruction, there has been some research on other approaches to engaging students in an

authentic experience within the classroom. In 2005, Hadjerrouit presents a pedagogical

model that translates constructivist principles in a web-based course in object-oriented

software engineering [69]. This course was designed to engage students in an authentic,

large, group project that would teach standard software engineering practices. The course

presented here similarly had a large project component that served as an authentic learning

experience for the nearly 200 students. In addition to this project, the instructor had 3 hours
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of lecture each week that could still be used as a valuable time-resource where they could

interact with the students and describe the concepts at a meta-level.

11.1.2 Understanding the Courses

11.1.3 The Software Engineering Course

The course, entitled “Software Engineering” was taught in Winter 2013. There were

a total of 189 students enrolled in the course; all were undergraduate students majoring

in computer science who had completed at least CS2. The course consisted of pre-lecture

reading and a reading quiz, followed by a modified PI lecture (described below). Lecture

was 1.5 hours twice a week. Once a week there were also a 2-hour lab and a 1-hour

discussion section both led by graduate teaching assistants. Pre-lecture reading quizzes

were 5% of the grade, clicker participation (must participate in 80% of the questions, not

based on correctness) was 5% of the grade, bi-weekly online quizzes were 10% of the grade,

closed-labs were 10% of the grade, the project was 35% of the grade, and the final was 35%

of the grade.

Course Learning Goals

The instructor of the course gave the students twelve specific learning goals in their

syllabus. The seven that are presented here are extremely complex activities that are also

situational.

1. How to acquire requirements from customers.

2. How to turn software requirements into executable code.

3. How to perform from-scratch software design, when it’s needed.

4. How to productively employ component-oriented software development.
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Figure 11.1. Description of how the PI lecture was run.

5. How to reflect on your team’s project and work to create customized agile development

process.

6. How to work productively with a small team (2-10 people).

7. Understanding how software fits into the world and the consequent responsibilities

that software developers carry.

In retrospect, the instructor would have liked to emphasize one major learning goal

not on this list: How to problem solve when there is no right answer. This goal is only

attainable through constant evaluation of risk and modification to the design and program

until the program is “complete”. Each cycle that evaluates risk is completely dependent

on the situation (programmer expertise, deadlines, customer requirements, budget) and

therefore there is no right answer.

Modified Peer Instruction

Although the course was generally held in a typical Peer Instruction format [2], the

instructor added an additional step that required the students to suggest answer choices for

the questions as shown in Figures 11.1 and 11.2.

As an example, Figure 11.2 shows a clicker question before students have suggested
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Figure 11.2. Example of a clicker question with no answer choices.

any answer choices. Because there is significantly less information presented in the question,

and because of the nature of the questions (relating to risk management), the instructor would

often review parts of the reading that were particularly ambiguous at the very beginning of

lecture. This provided the students with the instructors interpretation given his expertise in

the area, which prompted the students to think critically about the concepts of the course

(e.g. productivity) and made them better prepared to suggest answer choices during clicker

questions.

While students were suggesting answer choices a mini-discussion would arise be-

tween the instructor and the student suggesting an answer. The instructor would not discuss

whether it was a good or correct answer (that was left for the group discussions), but rather

would often ask students to clarify their answers. By first describing his interpretation of the

reading, allowing students to choose the answer choices and requiring that they clarify the

answers using software engineering terms, the instructor was engaging students in authentic

practice.

Other Courses that use Peer Instruction

Rationale questions can engage students in the tradeoffs between different plausible

solutions. Tradeoffs can be focused on broad concepts taught in introductory courses, such
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Figure 11.3. Rationale question in a CS0 course.

as in Figure 11.3, or details taught in more advanced upper-division courses, such as in

Figure 11.4.

Though traditional PI courses offer rationale questions that encourage students to

debate why an answer is correct, or the approach taken to reach that answer, nearly all of the

questions in a software engineering course are fundamentally rationale questions. The set of

“correct” answers is vast and correctness completely depends on situation and rationale.

11.1.4 Student Experiences and Feedback

Due to the uniqueness of this course in it’s content and pedagogy, it was of particular

interest to understand student experiences. At the end of this course students were asked to

fill out a survey reflecting on their experiences in the modified PI course. The survey was

worth 1% of their final exam grade (only 0.3% of the total grade) and students were assured

that the instructor would view none of their responses before grades were submitted. 78%

of the students reported previously taking a computer science course that was taught with

traditional PI, so the majority of students knew how this pedagogy was typically run.
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Figure 11.4. Rationale question in an architecture course.

Clicker Questions

Discussion Topics. In other PI courses students are encouraged to discuss why

they think an answer is correct and why they think the others are incorrect. In this course,

however, the discussions are focused around situational context. Therefore the answer

choices that students provide are not only meant to spark discussion about why they may

or may not be correct, but also about the situation presented to them in the question and

potentially come up with other answers as well. In a survey question that asked students

what they discussed during lecture, the majority of students described discussing tradeoffs,

definitions, and other possible answers. Though the instructor would like to see more

students discussing real world examples and other situations not directly asked about in the

question, the instructor might be able to better support student discussions in the future after

having seen survey results.

From the data presented in Table 11.1 it can also be gathered that the students were

still focusing much of their effort on coming to a correct answer. As a reminder, clickers

were only graded on participation, not correctness, but it seems that students were still trying
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Table 11.1. What students reported discussing during lecture.

Discussion Topics Students

Discussed tradeoffs 52%

Discussed definitions 70%

Discussed other possible answers 60%

Discussed real world examples 39%

Discussed concepts/situations that were not directly asked
about in the question

33%

Came to decision on the correct answer 63%

Could not decide what was the correct answer 43%

Discussed ambiguity of the question 3%

to find the correct answer so that they could prepare for the quizzes or final exam. Further

interviews with the students would be required to understand what a typical discussion

looked like.

Overall Lessons Learned

At the end of the survey students were asked, “Would you recommend this instructor,

why or why not”. 72% of the students said they would recommend the instructor, over

the past 5 years and 28 instances of this course the average rating is 74%. But what are

particularly interesting are the comments from those who said they would not recommend

the instructor. Of the 28% of students who did not recommend the instructor, 15 students

described some reason related to the peer instruction lecture. Comments were split into

three main concerns:

1. No “right” answer. Eight students were frustrated that during the clicker questions

the instructor did not provide a “right” answer. One student described this issue clearly

“There were many instances where it was not clear what the right answer should have

been...In computer science, students should be given more clear right and wrong
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answers...Bottom line, things should be spelled out more black and white.” Though

this is a valid concern for students, one important goal of this course is to encourage

the students to realize that designing software for customers on large teams is not

“black and white”. In the future, this concern will hopefully be mitigated by the

instructor more clearly describing the goal of “how to problem solve when there is no

right answer” at the beginning of the course.

2. Not the material they expected. Four students were unclear on what the goals were

of the course. They were either frustrated that the instructor was focusing lecture time

on discussing software engineering principles rather than Android development or

unclear of what they were supposed to get out of lectures. This can also be mitigated

with clear goals for each portion of the course and ensuring the students understand

why those goals are important.

3. Unclear clicker questions. Three students brought up concerns that can be critical

to the course’s success. One student describes this issue clearly, “Often time we

discuss 4 choices that are basically the same in our eyes while he sees everything

differently. It would be nice of him if he could give us a sense of direction before

discussion.” Because this was the first time the instructor was teaching this course

with this modified PI, he has learned a great deal about what kinds of responses

the students will give and how to ensure all of the important points (not necessarily

“correct” answers) are clear by the end of a class-wide discussion.

Although these are concerns that will be addressed in the next version of the course, it

is reassuring that only 6% of the students found concerns with the modified PI. In retrospect,

a modification might have improved student understanding of the clicker questions. Perhaps

the instructor should provide the questions online after lecture and each group has to provide

an answer (one either discussed during lecture, or another) and an explanation as to why

they thought it was the correct answer; essentially a summary of what they did during their
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group discussion. One student even suggested something similar in their feedback, which

could potentially reduce the concern for a “right” answer as well.

11.1.5 Discussion

Peer Instruction has shown clear benefits in learning and student engagement in the

past for many different courses. Though it has been a proven pedagogy, more data regarding

Peer Instruction and its effectiveness in varying classrooms is still lacking. A call to the

community is made to discuss what courses might be interesting to evaluate using PI, and

how might PI need to be modified to best serve that course. Peer Instruction has been shown

to be easily adoptable given materials and to improve learning and student engagement in

large and small courses. If this pedagogy could serve more courses, it could potentially

improve the learning of students over the entire curriculum.

11.1.6 Conclusion

In this paper a modification to Peer Instruction to best support the learning of

software engineering practices and skills was explored. This modification was compared

to other PI courses where learning goals included reasoning and rationale behind answer

choices. It was clear that the software engineering questions are predominately rationale

questions and are therefore fundamentally different than the typical “how” clicker questions.

This modification was then evaluated using student feedback on an end-of-term, anonymous

survey which showed that the majority of students reported enjoying the course. Based on

the survey, students also reported a critical take-away: software design and development is a

complex and difficult task, but after understanding risk management and mitigation, they

should be able to evaluate and solve issues that arise as best as possible.
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11.2 Developing Epistemic Frames: It is not Just About
Mass Production of Learning

Learning at Scale is a trend that can reduce educational barriers, particularly in

terms of accessibility. An issue with some of the current approaches is that they require the

learner to develop their own motivations and discipline to properly engage with the materials.

Often the intrinsic motivation of learners is disconnected from the desired learning goals

of the course. This is sometimes mitigated with motivational videos throughout lessons,

but is often lacking, which may be the cause for poor retention in MOOCs [136]. An

effective way to help learners develop a more authentic motivation is to engage them in

collaborative activities within a community of their peers. This can pose difficult for a

scalable online learning environment, because personal interactions will be limited and the

extrinsic motivators are more difficult to capture.

This work proposes two main contributions to the area:

• An immersive environment that provides a virtual community, and

• Suggestions for how to incorporate similar techniques into more traditional environ-

ments.

11.2.1 Background

An important feature of in-person education is the ability to form Communities of

Practice [158]. Wenger poses the question what if we adopted a different perspective, one

that placed learning in the context of our lived experience of participation in the world?
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This is particularly difficult to do when the learners are not able to meet in person. Virtual

Communities of Practice, like forums and wikis, offer an alternative community for learning

at scale but are limited because participation is not real-time and is restricted to text. There

are some people who are investigating the viability of virtual, video hangouts as part of

scaled online courses, but these pose a variety of logistical problems.

The benefit of Communities of Practice is that they support the development of

an epistemic frame [135]. An epistemic frame is the mindset of a given community

which involves five specific elements: knowledge, skills, values, identity and epistemology.

Communities of Practice are able to enculturate the members of the community in these

elements through in-person activities and interactions. Traditional learning environment

materials, such as lectures, solitary exercises and exams can help learners acquire the

knowledge and skills of a discipline, but often are lacking in helping them develop the

values, identity and epistemology of experts in the field.

Epistemic games are video games that simulate the training for a professional in a

given field [135]. Shaffer suggests that epistemic games are a great approach to enculturating

learners in the mindset of a discipline because they “are about knowledge, but they are

about knowledge in action - about making knowledge, applying knowledge, and sharing

knowledge. Epistemic games are rigorous, motivating, and complex because that’s what

characterizes the practices of innovation upon which they are modeled.” [136]

CodeSpells is an epistemic game attempting to incorporate these elements to help

learners develop the mindset of expert programmers. It attempts to engage learners not only

in authentic programming activities, but also in valuing the importance of code exploration

[55].

11.2.2 Developing an Authentic Mindset in CodeSpells

CodeSpells is a 3D interactive video game that is designed to engage novice program-

mers in Java Programming without the need of an instructor or tutor. It uses the metaphor
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Figure 11.5. SpellBook given to players to support code exploration.

of magic by casting the player as a wizard and providing them with a SpellBook, where

“spells” are really just Java programs [54].

There are three ways in which CodeSpells addresses the five elements of epistemic

frames: in-game resources, non-player character interactions and a unique reward system.

In this section, each of the five elements of epistemic frames will be addressed, alongside

suggestions for how similar approaches could be taken in more traditional learning at scale

environments.

Knowledge Acquisition

The primary in-game resource in CodeSpells is the SpellBook. Figure 11.5 shows

an example Java program and explanation of the components of the program. This is

essentially an in-game textbook that allows the players to begin to acquire knowledge about

programming. The players are encouraged through the SpellBook and interactions with

non-player characters to modify the spells and test them in the immersive environment. This

also provides players with an opportunity to gain further knowledge about the effects of

programs.

A similar approach that could be adopted in more traditional online environments
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Figure 11.6. An NPC suggesting a problem for the player to solve with a program.

could be a set of resources that are small enough for the learner to engage with individually,

but that can be integrated into larger problems. Media Computation is a great example

where learners can modify small parts of the program to make small changes to an image

when they are first learning, but soon integrate the different modifications to create amazing

artwork as they understand more [68].

Skill Development

Players are presented with quests set forth by the non-player characters. These quests

present the player with problems and suggested strategies for solving them. This part of

the game truly allows the player to develop the skill of writing programs to solve specific

requirements. An example quest can be seen in Figure 11.6.

In a more traditional online environment, students should have the opportunity to

engage in more open ended problem sets. This does not necessarily have to be a guided

exercise that is monitored and graded, but instead could be similar to exploratory homeworks,

where students are guided through an example and encouraged to modify the program in
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Figure 11.7. Badges that are earned for experimenting with spells.

authentic ways [56].

Values

CodeSpells uses a badge reward system. Players are encouraged to do a variety of

activities within the game to earn different kinds of badges. For example, Figure 11.7 shows

a set of badges that can be earned by exploring the code that is provided to the players. Code

exploration should be valued for the sole purpose of exploring and understanding the code.

A different set of badges that encourage players to solve very specific problems that require

small, specific code modifications.

Furthermore, there are even more badges that can be earned for doing something

creative with the spells, since this is not a scalable feature we will not go further into these

types of badges.

Traditional online learning environments might approach this epistemic frame el-

ement by designing innovative reward systems. For example, instead of simply requiring



www.manaraa.com

208

students to submit code, you could encourage them to design something different with the

same basic functions of a program that they have already written. Using techniques such

as peer assessment, you can then reward innovation and the ability for students to modify

programs for a different purpose. Alternatively, you could have assignments that require

students to find test cases that show a bug in the code, and submit the test case that caused

the program to fail. This would encourage the students to recognize the value of testing

code.

Identity

Embracing the identity of a discipline is a more difficult task than skill and knowledge

acquisition when scaling online learning. CodeSpells imparts the identity of programmers

through the interactions with the non-player characters. Not only are the NPCs giving the

problems for the players to solve, but they are also suggesting other ways in which the

players should interact with the code. Often times suggested code interactions do not lead

to players earning any rewards, which is by design. Players soon recognize that to be able

to solve more complex quests in the future, they must fully engage with the programs of

earlier quests.

One way in which a more traditional online environment might attempt to impart the

identity of a discipline would be to display motivational videos after major task completion.

For example, when a student completes a programming assignment they could then watch

how the instructor might modify the assignment slightly to do something completely differ-

ent. This would encourage the student to view programs not only as a solution to a specific

problem, but also as a new insight into solving other problems.

Epistemology

CodeSpells takes an interesting approach to the final element of epistemic frames;

epistemology. In CodeSpells the later quests are presented as problems that need to be
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solved. Players are then tasked with deciding how to solve the problem, which program they

should start with, which pieces of code they should take from other programs, and how that

would solve the problem. For example, in one of the final quests, the players have to write

a spell that incorporates three other spells: set a crate on fire, make it move in a particular

pattern, and make it teleport when it hits a particular area. Players must then decide which

spell they will start with and identify which pieces of other spells they must use to be able to

complete the program. Though within CodeSpells players are not asked to explicitly justify

their choices, the nature of the game encourages them to make educated choices and does

not support guess-and-check.

A more traditional environment might actually require the students to self-reflect on

their choices in programming [21]. Self-reflection has been seen to help students engage

with the material at a meta-cognitive level.

11.2.3 Conclusion

This work presents preliminary work in an alternative environment with specific

suggestions on how they might be integrated into more traditional environments. A call to

the community is made to discuss how the theory of epistemic frames might help inform

learning at scale course and resource designs.

11.2.4 Acknowledgements
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Conclusions

Computer science is becoming a discipline that everyone, even children, wants

exposure to; it’s becoming a 21st Century Skill [42, 25, 31, 61]. This improvement in the

last decade has caused student-teacher ratios in computer science to quickly grow to massive

numbers [98]. Introductory computer science courses often have hundreds of students and

only one instructor, extracurricular learning experiences for children have become selective,

and massively open online courses have become popular [113].

Since all learning, computer science included, requires novices to learn skills and

become enculturated (see Section 1.1), the quickly increasing student-teacher ratio reveals

two major challenges addressed in this work:

• University classrooms are getting larger and the gap between novice and expert is

rapidly widening, which reduces the effects of the learning experience, and

• Children do not have access to computer science teachers, and scalable options do not

support both skills and culture development.

I hypothesized that:

Advances in our understanding of learning, the subject of computer
science itself, and computing automation can integrate enculturation
into novice learning experiences and scale it to match large student-
teacher ratios.

210
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To test this hypothesis, I designed, implemented and evaluated two major interventions; one

for large, in-person, undergraduates and one for children.

12.1 Using Peer Instruction and Exploratory Home-
works to Enculturate Novice Undergraduates

In Chapters 3 through 6, I presented a transformation of a large university classroom

that showed improvements to students’ learning and enculturation into computer science.

In this course, students were more likely to be interactive in their learning, both in the

classroom, and at home doing homeworkm compared to other pedagogies. UCSD’s CSE 3:

Fluency in Information Technology is a CS0-level course targeted at novice students who

have no programming experience. Through this course, we contributed three major changes

to scalable, in-person, undergraduate education:

1. Peer Instruction is an effective pedagogy for enculturating students. Chapter 4

evaluated students perceptions of their role in a PI computing course. Analysis of

students self-reported activities demonstrated that the majority of students report

interactive activities (arguing, discussing, explaining to peers) in PI classes whereas

the majority report active activities (listening, taking notes) in their standard courses.

This substantial shift in classroom activities unsurprisingly causes students to also

change their perception of their role in a classroom. A grounded theory open-coding

investigation of student perceptions found that students were positively affected by the

shift in terms of class enjoyment, improved attendance and better attentiveness. They

also reported improved meta-cognition skills facilitated by more frequent feedback

and class discussions (see Section 4.5). Lastly, a few even reported trying to apply

their self-reported improved learning behaviors from PI classes to other classes. This

work has potential implications in identifying common desirable characteristics in

student-centered learning environments and speaks to the issues raised in the STEM
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retention literature.

2. The Abstraction Transition Taxonomy can be used to categorize formative and

summative assesements and find inconsistencies in course design. We proposed

that situated cognition theory [19], with its focus on learning for application in the

“real world” and its focus on developing expertise within the context of a community

is a useful lens for reconsidering programming instruction and perhaps computer

science instruction more generally. A number of factors supported this idea. First, our

community has norms that seem particularly challenging for outsiders to understand.

It may be that part of our collective recruitment and retention issues (at least in the US)

stems from the lack of attention to acculturation of new members. The AT Taxonomy

defined 18 learning outcomes that explicitly address the required culture, activity, and

tools required for members of the programming community which we believe needs

to extend, at least minimally, to embrace everyone in modern, digital society.

3. Out-of-Lecture activities can also scaffold novice undergraduates in skills and

culture development. Exploratory homeworks are tools that encourage students

to actively engage in pre-class reading (see Section 6.4); this includes writing and

debugging code as well as learning how to read technical, static texts. Active learn-

ing is a technique that has improved student learning in lecture and lab based set-

tings [139, 128], but rarely are students asked to actively learn on their own, before

lecture. Exploratory homeworks enhance already active textbooks, like the Alice

textbook [46], as well as more expository textbooks. The biggest benefit from students

actively reading before lecture is they come to lecture prepared to learn more complex

concepts and constructs enabling instructors to delve more deeply in lecture. Students

also develop authentic computing habits by actively participating in trial and error,

predictions and reflections when learning a new programming language. Novices

engaged with textual references in similar ways to how experts engage with them,
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which encouraged a cultural shift from their typical textbook reading, to a computer

science way of reading textbooks. We encourage the community to create exploratory

homeworks for CS0 and CS1 courses using a variety of textbooks and report back on

both effectiveness and challenges.

Furthermore, Section 11.1 described how these contributions could be applied to higher

level computing courses.

12.2 Enculturating and Teaching Children through a
Scalable Serious Game: CodeSpells

In Chapters 7 through 10 I have presented CodeSpells, a serious game that integrates

enculturation and skill in the learning experience for elementary-level students. CodeSpells

uses the metaphor of magic and wizardry to scaffold children’s learning, while engaging

them in the culture of computer science through game-play. Each iteration of the design,

implementation and evaluation of the game provided a piece of the overall CodeSpells

contribution:

1. CodeSpells can engage children similar to how current expert programmers

were engaged when they first began, in a word, it is authentic: We take the posi-

tion that it is highly relevant to study noninstitutional learning in which young people

teach themselves to program. We analyzed the origin stories of 30 individuals who

eventually became successful in computer science. We identified five qualities that

tended to occur across multiple origin stories and that can be tentatively posited to

correlate with the sparking of lifelong passions for computer science.

To more deeply study these qualities, we performed a laboratory study with 40 girls

(ages 10 to 12) and analyzed their experiences according to the aforementioned five

qualities. In just 1 hour, all 40 girls demonstrated at least three of the five qualities,

showing that CodeSpells could enculturate novice programmers at scale. This allowed
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us to refine our understanding of these qualities and even to observe a sixth quality

further deepening the theoretical framework.

Our contributions are three-fold:

• We give the first theoretical framework for understanding the conditions under

which the sparks of lifelong learning are sparked in non-institutional computer

science learning environments.

• We demonstrate two novel methodologies for further examining non-institutional

computer science learning. (The small amount of prior work that exists uses

only in situ ethnographic methodologies.)

• We contribute a new vocabulary for discussing and designing tools for novices,

using our theoretical framework to point out opportunities for improvement in

both novice-friendly IDEs and educational games.

Ultimately, we take the position of Maloney et al. [101] that studying non-institutional

learning is a means by which to understand learning in general. After all, non-

institutional learning has a unique character. It is unstructured. It is creative. It is

play. Also, as we saw in our laboratory study, the absence of values implicitly instilled

in institutional settings (e.g. that syntax errors are bad) can lead to differences in

behavior. As such, the study of non-institutional spaces may serve as an untapped

resource for computer science educators a resource that can help inform how we

structure our institutional spaces. The study of informal space can yield surprising

new insights for computer science education interventions. These findings offer new

ways to light fires and to keep them lit.

2. The story and metaphor of a serious game affects the enculturation of children.

Our goal was to get novice programmers immersed in a programming environment

that would lead to their ability to read, execute, understand, modify and create spells
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(programs) with determination and a positive view of their ability. We believe we

have begun to show how CodeSpells is a viable solution for encouraging novice

programmers to invest in their programming as they do with video games.

We plan to run a larger study where we can compare how novice programmers

engage with CodeSpells and Media Computation (which is used in our institutions

CS1 course), as well as other environments such as Alice and Scratch that also offer

immersive qualities. We plan to improve on our API as we measure learning gains

in our future studies, but posit that the level of authenticity versus power, along with

the metaphor of magic, engages novice programmers such that they can feel positive

about their struggles when learning their first industry-standard language.

Our contributions are two-fold: We have presented here an API and environment that

has:

• Allowed novice programmers to read, execute, understand, modify and write

CS1-level Java programs within a 45- minute period.

• Immersed novice programmers into their programming environment so much

so that they have developed a determination to solve problems and a positive

outlook on programming challenges.

3. Well-designed quests can effectively scaffold skills development. Based on a study

that shows students engagement with quests within CodeSpells, three key lessons

to consider when creating in-game quests have been presented. To develop these

guidelines, students were first observed during an exploratory study to understand

the issues with the initial quests within CodeSpells. Additional quests that required

more complex code edits were added and the expectation for the students to be able

to complete them was given. A second set of students was then observed and their

game-play was analyzed. It was observed that the expectation for significant code
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changes encouraged students to engage with code in a more suitable way.

Chapter 10 shows that CodeSpells both enculturates and teaches children the skills of

programming while playing and engaging with workbook-like resources and Section 11.2

describes how this contribution could be applied to other environments as well.

12.3 Closing Remarks

Advancements in interactive learning have improved novice learning experiences,

yet scaling these advancements is not straightforward. In this dissertation I have shown that

integrating skills development and enculturation into scalable learning environments can

effectively teach and enculturate novices in computer science. I have also suggested how

my two contributions could be expanded to include different levels of student-expertise and

different learning environments. It is an exciting time, and with these contributions we can

see a positive progression towards making computer science, truly, the 4th ‘R’.
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